SISTEMAS DE CONTROLE I
ÍNDICE

1 INTRODUÇÃO ..4
 1.1 DEFINIÇÕES ...4
 1.2 EXEMPLOS ...5
 1.3 CONTROLE DE PROCESSOS INDUSTRIAIS ..5
 1.4 PROBLEMAS DE CONTROLE EM ENGENHARIA ..7
 1.5 RESUMO DA HISTÓRIA DO CONTROLE AUTOMÁTICO ...8
 1.6 TRANSFORMADA DE LAPLACE ...8

2 CLASSIFICAÇÃO DE SISTEMAS ...12
 2.1 MONOVARIÁVEIS E MULTIVARIÁVEIS ...12
 2.2 CONTÍNUOS E DISCRETOS ..12
 2.3 VARIANTES E INVARIANTES NO TEMPO ...12
 2.4 SISTEMA A PARÂMETROS CONCENTRADOS E DISTRIBUÍDOS13
 2.5 DETERMINÍSTICOS E ESTOCÁSTICOS ..13
 2.6 COM MEMÓRIA E SEM MEMÓRIA..13
 2.7 SISTEMAS LINEARES E NÃO-LINEARES ...13
 2.7.1 Sistemas Lineares ...13
 2.7.2 Sistemas Não-Lineares ...15
 2.7.3 Linearização de Sistemas Não-Lineares ..16

3 MODELOS MATEMÁTICOS DE SISTEMAS..18
 3.1 FUNÇÃO DE TRANSFERÊNCIA (F.T.) ...18
 3.2 REPRESENTAÇÃO EM VARIÁVEIS DE ESTADO (V.E.) ...20
 3.3 RELAÇÃO ENTRE VARIÁVEIS DE ESTADO E FUNÇÃO DE TRANSFERÊNCIA21
 3.4 MODELAGEM DE SISTEMAS FÍSICOS ..22
 3.4.1 Variáveis Generalizadas ..22
 3.4.2 Elementos de Sistemas Físicos ..23
 3.4.3 Interconexão de Elementos de Sistemas..24
 3.4.4 Sistemas Mecânicos Translacionais ...26
 3.4.5 Sistemas Mecânicos Rotacionais ...29
 3.4.6 Sistemas Eletromecânicos ..31
 3.4.7 Sistemas Fluidicos ...33
 3.4.8 Sistemas Térmicos ...35
 3.5 DIAGRAMAS DE BLOCOS ..37
 3.5.1 Definição ...37
 3.5.2 Componentes ..37
 3.5.3 Diagrama de Blocos de um Sistema em Malha Fechada37
 3.5.4 Procedimento para a Construção ...38
 3.5.5 Redução de um Diagrama de Blocos ...38
 3.6 GRÁFICOS DE FLUXO DE SINAL..40
 3.6.1 Introdução ..40
 3.6.2 Definições ..41
 3.6.3 Diagrama de Fluxo de Sinal a Partir do Diagrama de Blocos41
 3.6.4 Fórmula de Ganho de Mason ..42
ESTABILIDADE

4.1 Definição (BIBO - BOUNDED INPUT, BOUNDED OUTPUT) 43
4.2 Critério de Estabilidade de Routh ... 43

CARACTERÍSTICAS EM MALHA FECHADA ... 46

5.1 Sensibilidade à Variação de Parâmetros .. 47
5.2 Efeito de Perturbações .. 48
5.3 O Custo da Realimentação .. 49

ANÁLISE DE DESEMPENHO TRANSITÓRIO E EM REGIME ESTACIONÁRIO DE SISTEMAS ... 49

6.1 Análise de Resposta Transitória ... 50
6.1.1 Sistemas de Primeira Ordem .. 50
6.1.2 Sistemas de Segunda Ordem .. 51
6.1.3 Sistemas de Ordem Superior .. 56
6.2 Desempenho em Regime Permanente .. 59
6.2.1 Introdução .. 59
6.2.2 Entrada Degrau .. 60
6.2.3 Entrada Rampa .. 60
6.2.4 Entrada Parábola .. 61

CONTROLADORES PID ... 62

7.1 Introdução .. 62
7.2 Ações de Controle PID .. 62
7.3 Implementação Eletrônica Analógica de Controladores PID 67
7.4 Modificações das Ações de Controle ... 68

ANÁLISE DE SISTEMAS POR VARIÁVEIS DE ESTADO.. 69

8.1 Descrição por Variáveis de Estado ... 69
8.2 Solução da Equação de Estado ... 70
8.3 Estabilidade ... 71
8.4 Controlabilidade ... 72
8.5 Observabilidade ... 73
8.6 Realizações de Funções de Transferência .. 74
8.6.1 Realização na Forma Canônica Observável .. 75
8.6.2 Realização na Forma Canônica Controlável .. 75
8.7 Realimentação de Estado .. 76
8.8 Observadores de Estado .. 78
8.9 Seguidor de Referência .. 83
1 INTRODUÇÃO

1.1 Definições

SISTEMA

É uma disposição, conjunto ou coleção de partes conectadas ou relacionadas de tal maneira a formarem um todo. Pode ser físico, biológico, econômico, etc.

CONTROLE

Estuda como agir sobre um dado sistema de modo a obter um resultado arbitrariamente especificado.

CONTROLADOR

Dispositivo utilizado para a obtenção do controle de um sistema.

SISTEMA DE CONTROLE

Conjunto formado pelo sistema a ser controlado e o controlador.

SISTEMA DE CONTROLE A MALHA ABERTA

É aquele em que a saída ou resposta não possui nenhuma influência sobre a entrada.

SISTEMA DE CONTROLE A MALHA FECHADA

É aquele em que a saída ou resposta influencia a entrada do sistema.
1.2 Exemplos

Ser humano tentando pegar um objeto

![Diagrama de ser humano tentando pegar um objeto]

Controle de temperatura de uma sala

![Diagrama de controle de temperatura de uma sala]

Controle do nível de um reservatório

![Diagrama de controle do nível de um reservatório]

1.3 Controle de Processos Industriais

Nas últimas décadas houve uma verdadeira revolução nos equipamentos de instrumentação. Quarenta anos atrás, muitos equipamentos eram mecânicos e pneumáticos. Existiam tubos entre ligando os equipamentos do processo e a sala de controle. Atualmente, os sistemas de controle são distribuídos com microprocessadores controlando muitas malhas simultaneamente.

A despeito destas mudanças, os conceitos básicos de sistemas de controle e algoritmos de controle permanecem essencialmente os mesmos. Agora é mais fácil implementar estruturas de controle, pois basta reprogramar um computador. A tarefa dos engenheiros de controle é a mesma: projetar um sistema de controle que atenda às especificações, seja estável, robusto.

A figura abaixo mostra os principais elementos de um sistema de controle típico de um processo industrial:
O sistema de malha fechada é composto por um sensor que detecta a variável de processo \((PV) \), um transmissor que converte o sinal do sensor em um sinal adequado (um sinal do tipo ar pressurizado em sistemas pneumáticos ou um sinal elétrico em sistemas eletrônicos) e o transmite para um controlador que compara o valor da variável de processo \((PV) \) com o valor do \textit{Set Point} \((SP) \) desejado e produz um sinal de controle apropriado e um elemento final de controle que muda a variável manipulada \((MV) \). Usualmente o elemento final de controle é uma válvula de controle operada por ar que abre e fecha modificando uma razão de fluxo.

O sensor, transmissor e válvula de controle estão localizados fisicamente no campo, onde está o processo. O controlador é usualmente localizado em um painel ou computador em uma sala de comando distante do processo. A ligação entre o painel e o campo é feita através de sinais elétricos que são enviados do transmissor para o controlador e do controlador para o elemento final de controle.

Os equipamentos de controle utilizados em plantas químicas ou em plantas típicas da área de petróleo são analógicos (de pressão ou eletrônicos) ou digitais. Os sistemas analógicos utilizam sinais de ar pressurizado (3 a 15 psi) ou sinais de corrente/tensão (4-20 mA, 10-50 mA, 0-10 V\textsubscript{DC}). Sistemas pneumáticos transmitem sinais através de pequenos tubos, enquanto sistemas eletrônicos usam fios.

Visto que muitas válvulas são ainda acionadas por ar pressurizado, sinais de corrente são usualmente convertidos para ar pressurizado. Um conversor \textit{I/P} (corrente para pressão) é usado para converter sinais de 4-20 mA em sinais de 3-15 psi.

Um controlador industrial possui um modo de operação manual (malha aberta) ou automático (malha fechada). Durante a partida ou em condições anormais, o operador do
processo pode utilizar o modo de operação manual, determinando a abertura da válvula de controle, independentemente do controlador. O chaveamento é usuallymente feito no painel de controle ou no computador.

Além disso, o ganho do controlador pode ser feito negativo ou positivo selecionando-se entre ação direta e reversa do controlador. Um ganho positivo resulta em uma saída do controlador decrescendo a medida que a variável do processo cresce (ação reversa). Já um ganho negativo resulta em uma saída do controlador crescendo a medida que a variável do processo cresce (ação direta). A escolha correta entre ação direta e reversa depende da ação do transmissor (que é usualmente direta), da ação da válvula (ar para abrir, AO, ou ar para fechar, AC) e do efeito da variável manipulada (MV) na variável de processo (PV). A idéia fundamental a ser seguida para a escolha correta da ação do controlador, é que a ação tomada pelo controlador deve levar avariável de processo (PV) a se aproximar do Set Point (SP).

Em resumo, um controlador industrial deve possuir as seguintes características:

1. Indicar o valor da Variável de Processo (PV): o sinal que chega do transmissor
2. Indicar o valor do sinal enviado para a válvula: a saída do controlador (usualmente nominada MV)
3. Indicar o Set Point (SP)
4. Ter um chave para selecionar entre modo manual ou automático
5. Ter uma forma de alterar o valor do SetPoint quando o controlador está em automático
6. Ter uma forma de alterar o sinal para a válvula quando o controlador está em manual
7. Ter um modo de seleção entre ações direta e reversa do controlador

1.4 Problemas de Controle em Engenharia
1.5 Resumo da História do Controle Automático

1769 ⇒ Máquina a vapor de James Watt
1868 ⇒ J. C. Maxwell desenvolve o modelo matemático para o controle de uma máquina a vapor
1913 ⇒ Henry Ford desenvolve uma máquina de montagem utilizada na produção de automóveis
1927 ⇒ H. W. Bode analisa amplificadores realimentados
1932 ⇒ H. Nyquist desenvolve um método para analisar a estabilidade de sistemas
1952 ⇒ Controle numérico desenvolvido pelo MIT
1954 ⇒ George Devol desenvolve o primeiro projeto industrial robotizado
1970 ⇒ Teoria de variáveis de estado e controle ótimo é desenvolvida
1980 ⇒ Projeto de sistemas de controle robusto é desenvolvido
1990 ⇒ Automação da manufatura é difundida
1994 ⇒ Controle automático é largamente utilizado em automóveis. Sistemas robustos são utilizados na manufatura

1.6 Transformada de Laplace

Definição
Seja

\[f(t) \Rightarrow \text{Função do tempo } t \text{ com } f(t) = 0 \text{ para } t < 0 \]

\[s \Rightarrow \text{Variável complexa} \]

\[L \Rightarrow \text{Operador de Laplace} \]

\[F(s) \Rightarrow \text{Transformada de Laplace de } f(t) \]

\[L[f(t)] = F(s) = \int_{0}^{\infty} f(t) e^{-st} dt \]

Transformada de Algumas Funções Particulares

- Degrau unitário

\[f(t) = \begin{cases}
0 & t < 0 \\
1 & t \geq 0
\end{cases} \Rightarrow \quad F(s) = \frac{1}{s} \]
- Rampa unitária

\[f(t) = \begin{cases}
0 & t < 0 \\
1 & t \geq 0
\end{cases} \quad \Rightarrow \quad F(s) = \frac{1}{s^2} \]

- Parábola unitária

\[f(t) = \begin{cases}
0 & t < 0 \\
t & t \geq 0
\end{cases} \quad \Rightarrow \quad F(s) = \frac{2}{s^3} \]

- Função exponencial

\[f(t) = e^{-at} \quad t \geq 0 \quad \Rightarrow \quad F(s) = \frac{1}{s + a} \]

- Senóide

\[f(t) = \sin(\omega t) \quad t \geq 0 \quad \Rightarrow \quad F(s) = \frac{\omega}{s^2 + \omega^2} \]

- Função pulso unitário

\[\delta(t) = \lim_{\Delta \to 0} f_p(t) \]

\[F_p(s) = \int_{0}^{\Delta} \frac{1}{\Delta} e^{-st} \, dt = \frac{1}{s\Delta} \left(1 - e^{-s\Delta}\right) \]

- Função impulso unitário
\[F_1(s) = \lim_{\Delta \to 0} F_0(s) = \lim_{\Delta \to 0} \frac{d}{d\Delta} \left(1 - e^{-s\Delta} \right) = \lim_{\Delta \to 0} \frac{s e^{-s\Delta}}{s} = 1 \]

Propriedades da Transformada de Laplace

a) Homogeneidade
\[L[af(t)] = aL[f(t)] = aF(s) \]

b) Aditividade
\[L[f_1(t) \pm f_2(t)] = L[f_1(t)] \pm L[f_2(t)] = F_1(s) \pm F_2(s) \]

c) Translação no tempo
\[L[f(t - a)] = e^{-as} F(s) \]

d) Mudança de escala de tempo
\[L\left(\frac{1}{\alpha} f \right) = \alpha F(\alpha s) \]

e) Translação no domínio s
\[L \left[e^{at} f(t) \right] = F(s - a) \]

f) Diferenciação
\[L \left[\frac{d^n}{dt^n} f(t) \right] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f(t) - \ldots - f^{(n-1)}(0) \]

g) Valor final
\[\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \]

Se \(sF(s) \) não tiver pólos no eixo imaginário ou semi-plano direito aberto (pólo é valor para o qual \(|sF(s)| \to \infty \))
h) Valor inicial
\[\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s) \]

j) Integral da convolução
\[L \left[\int_{0}^{t} f_1(t - \tau)f_2(\tau)d\tau \right] = F_1(s)F_2(s) \]

k) Integração
\[L \left[\int f(t)dt \right] = \frac{F(s)}{s} + \frac{f^{-1}(0)}{s} \quad \text{onde} \quad f^{-1}(0) = \int_{0}^{t} f(t)dt \bigg|_{t=0} \]

Transformação Inversa de Laplace (Expansão em Frações Parciais)
\[F(s) = F_1(s) + F_2(s) + \ldots + F_n(s) \]
\[L^{-1}[F(s)] = f_1(t) + f_2(t) + \ldots + f_n(t) \]

Em controle:
\[F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s - p_1)(s - p_2) \ldots (s - p_n)} \]

onde \(p_1(s), p_2(s), \ldots, p_n(s) \rightarrow \) polos de \(F(s) \)

Casos:

a) Pólos reais simples
\[F(s) = \frac{C_1}{s - p_1} + \frac{C_2}{s - p_2} + \ldots + \frac{C_k}{s - p_k} + \ldots + \frac{C_n}{s - p_n} \]
\[C_k = \left[(s - p_k)F(s) \right]_{s = p_k} \]
\[L^{-1}\left[\frac{C_k}{s - p_k} \right] = C_k e^{p_k t} \]

b) Para um pólo de multiplicidade \(r \)
\[
\frac{C_{kr}}{(s - p_k)^r} + \frac{C_k(r-1)}{(s - p_k)^{r-1}} + ... + \frac{C_k(r-i)}{(s - p_k)^{r-i}} + \frac{C_{kl}}{(s - p_k)}
\]

\[
C_k(r-i) = \left\{ \frac{1}{i!} \frac{d^i}{ds^i} \left[(s - p_k)^r F(s) \right] \right\}_{s=p_i}, \quad i = 0, 1, ... , r-1
\]

\[
L^{-1}\left[\frac{C_k(r-i)}{(s - p_k)^{r-i}} \right] = \frac{C_k(r-i)}{(r-i)!} t^{r-i-1} e^{p_i t}
\]

c) Para um par de pólos complexos conjugados

\[
p_k = \sigma + j\omega d
\]
\[
p_{k+1} = \sigma - j\omega d
\]

\[
\frac{C_k}{s - p_k} + \frac{C_{k+1}}{s - p_{k+1}} \quad \quad C_k = \left[(s - p_k)F(s) \right]_{s=p_i} = |C_k| \quad |C_k|
\]

\[
L^{-1}\left[\frac{C_k}{s - p_k} + \frac{C_{k+1}}{s - p_{k+1}} \right] = 2|C_k| e^{\sigma t} \text{sen}(\omega d t + |C_k + 90^\circ|)
\]

2 CLASSIFICAÇÃO DE SISTEMAS

2.1 Monovariáveis e Multivariáveis

\[
\begin{align*}
&\text{Monovariável} & \begin{array}{c}
S \\
\text{u} & \rightarrow & \text{y}
\end{array} \\
&\text{Multivariável} & \begin{array}{ccc}
S & \rightarrow & y_1 \\
& & y_2 \\
& & y_r
\end{array}
\end{align*}
\]

2.2 Contínuos e Discretos

Contínuos → Todas as variáveis são funções de um tempo contínuo
Discretos → Envolve uma ou mais variáveis que são conhecidas somente em determinados instantes de tempo.

2.3 Variantes e Invariantes no Tempo

Se:
Ou seja, em um sistema invariante no tempo, a saída não depende do instante em que a entrada é aplicada.

2.4 Sistema a Parâmetros Concentrados e Distribuídos

Parâmetros Concentrados \(\rightarrow \) Equações diferenciais ordinárias
Parâmetros Distribuídos \(\rightarrow \) Equações diferenciais parciais

2.5 Determinísticos e Estocásticos

Um sistema de controle é determinístico se sua saída é prognosticável e repetível. Caso contrário, ele é estocástico.

2.6 COM MEMÓRIA E SEM MEMÓRIA

Um sistema é sem memória se a resposta atual é uma função somente da entrada atual, sendo independente de entradas passadas. Caso contrário, o sistema é dito com memória.

2.7 SISTEMAS LINEARES E NÃO-LINEARES

2.7.1 Sistemas Lineares

Um sistema inicialmente em repouso é dito linear se e somente se apresenta as seguintes propriedades:

a) Aditividade: (Princípio da superposição)
b) Homogeneidade

\[u \rightarrow S \rightarrow y \quad \Rightarrow \quad \alpha u \rightarrow S \rightarrow \alpha y \quad \forall \alpha \in \mathbb{R} \]

\[\alpha u_1 + \beta u_2 \rightarrow S \rightarrow \alpha y_1 + \beta y_2 \quad \forall \alpha, \beta \in \mathbb{R} \]

Combinando a) e b):

Exemplos

1) \(y = au \)

\[u_1 \rightarrow y_1 = au_1 \]
\[u_2 \rightarrow y_2 = au_2 \]

\[u = \alpha u_1 + \beta u_2 \rightarrow y = a(\alpha u_1 + \beta u_2) = \alpha (au_1) + \beta (au_2) = \alpha y_1 + \beta y_2 \]

Ou, seja, o sistema é LINEAR

2) \(y + y = u \)

\[u_1 \rightarrow y_1 + y_1 = u_1 \]
\[\cdot \]
\[u_2 \rightarrow y_2 + y_2 = u_2 \]

\[y + y = \alpha u_1 + \beta u_2 = \alpha (y_1 + y_1) + \beta (y_2 + y_2) = (\alpha y_1 + \beta y_2) + (\alpha y_1 + \beta y_2) \]

Logo,

\[y = \alpha y_1 + \beta y_2 \] e o sistema é LINEAR
2.7.2 Sistemas Não-Lineares

\[\alpha u_1 + \beta u_2 \rightarrow S \rightarrow y \neq \alpha y_1 + \beta y_2 \]

EXEMPLOS

1) \(y = \cos u \)

\[u_1 \rightarrow y_1 = \cos u_1 \]
\[u_2 \rightarrow y_2 = \cos u_2 \]

\[u = \alpha u_1 + \beta u_2 \rightarrow y = \cos(\alpha u_1 + \beta u_2) \neq \alpha \cos u_1 + \beta \cos u_2 = \alpha y_1 + \beta y_2 \]

Assim,

\[y \neq \alpha y_1 + \beta y_2 \]

\(e \) o sistema é NÃO-LINEAR

2) \(y + y = u + u \)

\[u_1 \rightarrow y_1 + \dot{y}_1 = u_1 + u_1 \]
\[u_2 \rightarrow y_2 + \dot{y}_2 = u_2 + u_2 \]

\[y + y = \alpha u_1 + \beta u_2 + (\alpha u_1 + \beta u_2) = \alpha y_1 + \alpha \dot{y}_1 + \beta y_2 + \beta \dot{y}_2 \]

\[= \left(\alpha y_1 + \dot{y}_2 \right) + \alpha y_1 + \beta y_2 y_2 \]

Logo,

\[y \neq \alpha y_1 + \beta y_2 \]

\(e \) o sistema é NÃO-LINEAR

3) Linear com Saturação
4) Liga-Desliga

2.7.3 Linearização de Sistemas Não-Lineares

Ponto de operação → (x₀, y₀)

\[y = f(x) \]

A função f(x) pode ser expandida em série de Taylor em torno do ponto (x₀ , y₀)

\[y = f(x) = f(x₀) + \frac{df}{dx}(x-x₀) + \frac{1}{2!} \frac{d²f}{dx²}(x-x₀)² + \ldots \]
onde as derivadas \(\frac{df}{dx}, \frac{d^2f}{dx^2}, \ldots \) são calculadas em \(x = x_0 \)

Se \((x - x_0) \) é pequeno, então a equação anterior pode ser escrita como:

\[
y = f(x_0) + \frac{df}{dx}(x - x_0)
\]

Definindo

\[
k = \left. \frac{df}{dx} \right|_{x=x_0},\text{ temos}
\]

\[
y = y_0 + k(x - x_0)
\]

Um sistema cuja saída depende de \(n \) variáveis

\[
y = f(x_1, x_2, \ldots, x_n)
\]

pode ser linearizado em torno do ponto de operação \([y_0, (x_{10}, x_{20}, \ldots, x_{n0})]\), resultando em

\[
y = f(x_{10}, x_{20}, \ldots, x_{n0}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} \bigg|_{x_{10}, x_{20}, \ldots, x_{n0}} (x_j - x_{j0})
\]

Denominando

\[
k_j = \left. \frac{\partial f}{\partial x_j} \right|_{x_{10}, x_{20}, \ldots, x_{n0}}
\]

temos,

\[
y = y_0 + k_1(x_1 - x_{10}) + k_2(x_2 - x_{20}) + \ldots + k_n(x_n - x_{n0})
\]

EXEMPLOS

1) Pêndulo Simples
T(θ) = mg\sin θ

Ponto de operação \quad θ₀=0; \quad T(θ₀) = 0

Linearizando,

\[T(θ) = T(θ₀) + \frac{dT(θ)}{dθ} \Bigg|_{θ=θ₀} (θ - θ₀) = 0 + mg\cos θ₀ (θ - θ₀) \]

\[
T(θ) = mgθ₀
\]

2) \quad y + y² \cdot y + \sin y = u

Ponto de operação \rightarrow \begin{cases}
\dot{y} = 0 \\
u = u₀
\end{cases}

\[\ddot{y} = -y² \cdot \dot{y} - \sin y + u \]

Linearizando, temos:

\[y = y₀ + \frac{\partial y}{\partial y₀} (y₀ - y) + \frac{\partial y}{\partial y₀} (y₀ - y₀) + \frac{\partial y}{\partial u} (u - u₀) \]

Calculando as derivadas,

\[\ddot{y} = u₀ + 0 - y + u - u₀ \]

\[y + y = u \]

3 MODELOS MATEMÁTICOS DE SISTEMAS

Existem, basicamente, dois tipos de modelos matemáticos de sistemas: descrição externa ou por função de transferência e descrição interna ou por variáveis de estado.

3.1 Função de Transferência (F.T.)

Considere um sistema linear, invariante no tempo, a parâmetros concentrados descrito pela seguinte equação diferencial:
Aplicando a transformada de Laplace em ambos os lados da equação acima, com condições iniciais nulas:

\[
\begin{align*}
(s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n) Y(s) &= (b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_{n-1} s + b_n) U(s) \\
Y(s) &= \frac{(b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_{n-1} s + b_n)}{(s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n)} = G(s)
\end{align*}
\]

OBS:
- A F.T. é uma propriedade do sistema, independe da magnitude e da natureza da entrada ou função de excitação.
- A F.T. inclui as unidades necessárias para relacionar a entrada com a saída, não fornecendo qualquer informação relativa à estrutura física do sistema.
- Se a F.T. for conhecida, a saída pode ser estudada para várias formas de entrada.
- A F.T. pode ser obtida experimentalmente.
- Matematicamente, G(s) pode ser definida como a transformada de Laplace da resposta ao impulso do sistema.

A Função de Transferência pode ser escrita como:

\[
G(s) = \frac{K(s - z_1)(s - z_2)\ldots(s - z_{n-1})}{(s - p_1)(s - p_2)\ldots(s - p_n)} = \frac{N(s)}{D(s)}
\]

onde

\[
z_1, z_2, \ldots, z_{n-1} \text{ são chamados de zeros do sistema} \quad ; \quad G(s) = 0
\]

\[
p_1, p_2, \ldots, p_n \text{ são chamados de pólos do sistema} \quad ; \quad G(s) \rightarrow \infty
\]

EXEMPLO:
3.2 Representação em Variáveis de Estado (V.E.)

Idéia: representar uma equação diferencial de n-ésima por um conjunto de n equações diferenciais de 1ª ordem.

Considerando a seguinte equação diferencial (não envolve derivadas da entrada):

\[y + a_1 y + \ldots + a_{n-1} \dot{y} + a_n y = u \]

com condições iniciais \(y(0), \dot{y}(0), \ldots, y(0). \)

Definindo:

\[
\begin{align*}
x_1 &= y \\
x_2 &= \dot{y} \\
&\vdots \\
x_n &= y
\end{align*}
\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
&\vdots \\
\dot{x}_{n-1} &= -a_n x_1 - a_{n-1} x_2 - \ldots - a_1 x_n + u
\end{align*}
\]

Definindo

\[
A = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 \\
-a_n & -a_{n-1} & -a_{n-2} & \ldots & -a_1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & 0 & \ldots & 0 & 0
\end{bmatrix}
\]

Temos:

\[
\dot{x} = Ax + Bu \quad \text{EQUAÇÃO DE ESTADO}
\]
EQUAÇÃO DA SAída

Se a equação diferencial envolve derivadas da entrada:

\[y + a_1 y + ... + a_{n-1} y + a_n y = b_1 u + b_2 u + ... + b_{n-1} u + b_n u \]

podemos ter a seguinte representação em V.E.:

\[
A = \begin{bmatrix}
 0 & 0 & ... & 0 & -a_n \\
 1 & 0 & ... & 0 & -a_{n-1} \\
 ... & ... & ... & ... & ...
\end{bmatrix} ;
B = \begin{bmatrix}
 b_n \\
 b_{n-1} \\
 ... \\
 b_1
\end{bmatrix} ;
C = \begin{bmatrix}
 0 & 0 & ... & 0 & 1
\end{bmatrix}
\]

OBS:
- A representação em V.E. dá a informação sobre a estrutura interna do sistema
- A escolha das variáveis de estado não é única. Assim, existem infinitas formas de representar um mesmo sistema em variáveis de estado.

EXEMPLO:

\[
\begin{align*}
\dot{x}_1 &= v_c \\
\dot{x}_2 &= i_L
\end{align*}
\]

\[
\begin{bmatrix}
\dot{v}_c \\
\dot{i}_L
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{1}{C} \\
\frac{1}{L} & -\frac{R}{L}
\end{bmatrix} \begin{bmatrix}
v_c \\
i_L
\end{bmatrix} + \begin{bmatrix}
\frac{1}{C} \\
0
\end{bmatrix} i
\]

3.3 Relação Entre Variáveis de Estado e Função de Transferência

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx
\end{align*}
\]

\[sX(s) - x(0) = AX(s) + BU(s) \]

\[Y(s) = CX(s) \]
\[(sI - A)X(s) = BX(s) \quad \Rightarrow \quad X(s) = (sI - A)^{-1}BU(s)\]

Logo,

\[
G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B
\]

Mas,

\[
(sI - A)^{-1} = \frac{\text{adj}(sI - A)}{\det(sI - A)}
\]

e

\[
G(s) = K\frac{N(s)}{D(s)}
\]

Comparando estas três últimas equações:

\[
KN(s) = C \text{adj}(sI - A)B \quad e
\]

\[
D(s) = \det(sI - A)
\]

Assim, os valores de s que satisfazem \[
\det(sI - A) = 0 \quad \rightarrow \quad \text{Autovalores da matriz A}
\]

\[
\downarrow
\]

Também satisfazem

\[
D(s) = 0 \quad \rightarrow \quad \text{Raízes de D(s)} \quad \rightarrow \quad \text{Pólos de G(s)}
\]

3.4 Modelagem de Sistemas Físicos

Para entender e controlar sistemas complexos, devemos obter modelos matemáticos quantitativos destes sistemas. Como os sistemas em consideração são dinâmicos, as suas equações descritivas são equações diferenciais.

Tais equações que descrevem o comportamento dinâmico de um sistema físico são obtidas através das leis físicas do processo. Este procedimento se aplica igualmente a sistemas mecânicos, elétricos, fluidos e termodinâmicos.

3.4.1 Variáveis Generalizadas
Visando generalizar o problema de modelagem, ou seja, apresentar uma metodologia que independa do sistema físico a ser tratado, iremos definir um par de variáveis \((e,f)\), aos quais damos o nome de variáveis generalizadas.

A grosso modo, podemos dizer que as variáveis generalizadas de um dado sistema são aquelas cujo produto é igual (ou proporcional) a potência (energia no tempo) entrando ou saindo do sistema.

Neste par de variáveis generalizadas, identificamos dois tipos de variáveis, que dependem da forma com que elas agem nos elementos dos sistemas. Assim, temos as variáveis ATRAVÉS (corrente, força) e as variáveis ENTRE (tensão, velocidade). Notar que a designação também está relacionada ao tipo de instrumento requerido para medir cada variável em um sistema físico: medidores de força e corrente são usados em série para medir o que atravessa o elemento, e medidores de velocidade e tensão são conectados em paralelo para medir a diferença entre o elemento.

A tabela a seguir mostra as variáveis generalizadas para diferentes sistemas físicos.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Variável Através</th>
<th>Variável Entre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elétrico</td>
<td>Corrente, (i)</td>
<td>Tensão, (v)</td>
</tr>
<tr>
<td>Mecânico</td>
<td>Força, (F)</td>
<td>Velocidade, (v)</td>
</tr>
<tr>
<td>Rotacional</td>
<td>Torque, (\tau)</td>
<td>Velocidade angular, (\omega)</td>
</tr>
<tr>
<td>Fluido</td>
<td>Vazão, (Q)</td>
<td>Pressão, (P)</td>
</tr>
<tr>
<td>Térmico</td>
<td>Fluxo de Calor, (q)</td>
<td>Temperatura, (T)</td>
</tr>
</tbody>
</table>

Este par de variáveis generalizadas são chamados também de variáveis ESFORÇO (entre) e FLUXO (através). Esta denominação será utilizada a partir de agora: esforço \((e)\), fluxo \((f)\).

3.4.2 Elementos de Sistemas Físicos

Sob o enfoque energético e usando a definição de variáveis generalizadas, podemos classificar os elementos de sistemas em três tipos:
• **Fontes de energia** ⇒ - fontes de variáveis entre (ESFORÇO)
- fontes de variáveis através (FLUXO)

• **Armazenadores de energia** ⇒ - armazenadores de variáveis entre (ESFORÇO)
- armazenadores de variáveis através (FLUXO)

• **Dissipadores de energia**

A tabela a seguir mostra os elementos de diferentes sistemas físicos, separando-os em armazenador de fluxo, armazenador de esforço e dissipadores.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Armazenador de Fluxo</th>
<th>Armazenador de Esforço</th>
<th>Dissipador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elétrico</td>
<td>Capacitor</td>
<td>Indutor</td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>$i = C \frac{dv_{21}}{dt}$</td>
<td>$v_{21} = L \frac{di}{dt}$</td>
<td>$i = \frac{v_{21}}{R}$</td>
</tr>
<tr>
<td>Mecânico</td>
<td>Massa</td>
<td>Mola</td>
<td>Atrito Viscoso</td>
</tr>
<tr>
<td></td>
<td>$F = M \frac{dv_{2}}{dt}$</td>
<td>$v_{21} = \frac{1}{K} \frac{dF}{dt}$</td>
<td>$F = Bv_{21}$</td>
</tr>
<tr>
<td>Rotacional</td>
<td>Inércia</td>
<td>Mola Torcional</td>
<td>Atrito Viscoso Rot.</td>
</tr>
<tr>
<td></td>
<td>$\tau = J \frac{d\omega_{2}}{dt}$</td>
<td>$\omega_{21} = \frac{1}{K_r} \frac{d\tau}{dt}$</td>
<td>$\tau = B\omega_{21}$</td>
</tr>
<tr>
<td>Fluido</td>
<td>Reservatório</td>
<td>Inércia fluida</td>
<td>Resistência fluida</td>
</tr>
<tr>
<td></td>
<td>$Q = C_r \frac{dP_{21}}{dt}$</td>
<td>$P_{21} = I_r \frac{dQ}{dt}$</td>
<td>$Q = \frac{1}{R_f} P_{21}$</td>
</tr>
<tr>
<td>Térmico</td>
<td>Corpo</td>
<td>-</td>
<td>Resistência Térmica</td>
</tr>
<tr>
<td></td>
<td>$q = C_t \frac{dT_2}{dt}$</td>
<td>-</td>
<td>$q = \frac{1}{R_{T_{21}}}$</td>
</tr>
</tbody>
</table>

3.4.3 **Interconexão de Elementos de Sistemas**

A forma com que os elementos de um sistema são conectados gera um novo conjunto de relações, que independem das características dos elementos e das suas relações dinâmicas.

Existem duas maneiras diferentes de conectar elementos de sistemas:

Conexão Série
As relações em um sistema composto podem ser colocadas como restrições de compatibilidade de esforço e de continuidade de fluxo.

RESTRIÇÃO DE COMPATIBILIDADE DE ESFORÇO

\[\sum_{k=1}^{n} e_k = 0 \]

RESTRIÇÃO DE CONTINUIDADE DE FLUXO

\[\sum_{k=1}^{n} f_k = 0 \]

Estas restrições podem ser aplicadas aos mais diversos tipos de sistemas físicos, para obter ao seus modelos matemáticos (equações diferenciais que os descrevem).
Em resumo, modelagem matemática pode ser interpretada como abaixo:

\[
\begin{align*}
\text{Restrições interconectivas} & \quad v_1 + v_2 + v_3 = 0 \\
\text{relações básicas} & \quad \downarrow \quad \downarrow \\
\text{relações constitutivas} v = Ri & \quad \leftrightarrow \quad \text{relações dinâmicas} \quad v = \frac{dx}{dt} \\
\text{combinação} & \quad \downarrow \\
\text{variáveis de estado} & \quad \text{F.T} \Rightarrow \text{modelo matemático}
\end{align*}
\]

3.4.4 Sistemas Mecânicos Translacionais

Analogia:
força → corrente
e → velocidade
f → força

Ex1:

\[f_m = M \frac{dv}{dt} \quad ; \quad \text{Logo} \quad f = M \frac{dv}{dt} + k \int vdt + bv\]

Relações Dinâmicas (RD)

\[v = \frac{dx}{dt} \quad ; \quad \text{Logo} \quad f = M \frac{dv}{dt} + k \int vdt + bv\]

\[f = M \frac{d^2x}{dt^2} + kx + b \frac{dx}{dt}\]

\[(Ms^2 + Bs + K)X(s) = F(s) \Rightarrow \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}\]
\[x_2(t) = v(t) = \dot{x}(t) \]
\[x_1(t) = x(t) \]
\[\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{b}{M} \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} f \]
\[y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \]

Ex2:

RI:

RC:

RD:

\[v_y = \frac{dy}{dt} \quad v_u = \frac{du}{dt} \]
\[m\ddot{y} + b(\dot{y} - \dot{u}) + k(y - u) = 0 \quad \Rightarrow \quad m\ddot{y} + b\dot{y} + ky = b\dot{u} + ku \]
\[\Rightarrow \quad \ddot{y} + \frac{b}{m} \dot{y} + \frac{k}{m} y = \frac{b}{m} \dot{u} + \frac{k}{m} u \]
\[x_2 = y \]
\[x_1 = \dot{x}_2 + \frac{b}{m} x_2 - \frac{b}{m} u \quad \Rightarrow \quad \dot{x}_2 = x_1 - \frac{b}{m} x_2 + \frac{b}{m} u \]
\[\dot{x}_1 = -\frac{k}{m} x_2 + \frac{k}{m} u \]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
0 & -\frac{k}{m} \\
1 & -\frac{b}{m}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
k/m \\
b/m
\end{bmatrix} u
\quad y = [0 \quad 1]
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

Ex3:

RI:

\[
f = f_{m1} + f_{b1} + f_{b3} + f_{x1}
\]

RC–RD:

\[
f_{k1} = k_1 z_1 \\
f_{k2} = k_2 \dot{z}_2 \\
f_{b3} = b_3 (\dot{z}_1 - \dot{z}_2) \\
f_{b3} = b_3 (z_2 - z_1) \\
f_{b1} = b_1 \dot{z}_1 \\
f_{b2} = \dot{z}_2 \\
f_{m1} = m_1 \ddot{z}_1 \\
f_{m2} = m_2 \ddot{z}_2
\]

\[
m_1 \ddot{z}_1 + b_1 \ddot{z}_1 + b_3 (\ddot{z}_1 - \ddot{z}_2) + k_1 z_1 = f \\
m_1 \ddot{z}_2 + b_2 \ddot{z}_2 + b_3 (\ddot{z}_2 - \ddot{z}_1) + k_2 z_2 = 0
\]
Estado: \(x_1 = z_1 ; x_2 = \ddot{z}_1 ; x_3 = z_2 ; x_4 = \dot{z}_2 \)

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \frac{- (b_1 + b_3)}{m_1} x_2 + \frac{b_3}{m_1} x_4 - \frac{k_1}{m_1} x_1 + \frac{f}{m_1} \\
\dot{x}_3 &= \frac{- (b_2 + b_3)}{m_2} x_3 + \frac{b_3}{m_2} x_2 - \frac{k_2}{m_2} x_3 \\
\dot{x}_4 &= x_4
\end{align*}
\]

Ex4: Transformador mecânico

RI:

\[
\begin{align*}
F_1 &= F_2 l_1 - F_2 l_2 \\
F_2 &= F_2 l_2
\end{align*}
\]

RC:

\[
F_m = M \frac{dv}{dt} \quad v = \frac{1}{k} \frac{df_k}{dt} \quad fb = Bv
\]

RD:

\[
v = \frac{dy}{dt}
\]

Logo, \(M \frac{dv}{dt} + k \int vdt + Bv = F_1 \frac{l_1}{l_2} \Rightarrow My + By + ky = F_1 \frac{l_1}{l_2} \)

3.4.5 Sistemas Mecânicos Rotacionais

Ex1:
RI:

\[T = T_{T1} + T_{B1} + T_{B3} \]

\[T_{B3} = T_{T2} + T_{B2} \]

RC:

\[T_{I1} = I_1 \frac{d\omega_1}{dt} \quad T_{B1} = B_1\omega_1 \quad T_{B3} = B_3(\omega_1 - \omega_2) \]

\[T_{I2} = I_2 \frac{d\omega_2}{dt} \quad T_{B2} = B_2\omega_2 \]

RD:

\[\omega_1 = \frac{d\theta_1}{dt} \quad \omega_2 = \frac{d\theta_2}{dt} \]

\[T = I_1 \frac{d\omega_1}{dt} + B_1\omega_1 + B_3(\omega_1 - \omega_2) \]

\[B_3(\omega_1 - \omega_2) = I_2 \frac{d\omega_2}{dt} + B_2\omega_2 \]

\[T(s) = (I_1s + B_1 + B_3)\omega_1(s) - B_3\omega_2(s) \]

\[B_3\omega_1(s) - B_2\omega_2(s) = I_2s\omega_2(s) + B_2\omega_2(s) \]

\[\omega_2(s) = \frac{B_3}{I_1s + (B_2 + B_3)} \omega_1(s) \]

\[T(s) = (I_1s + B_1 + B_3)\omega_1(s) - \frac{B_3}{I_2s + (B_2 + B_3)} \omega_1(s) \]

\[\omega_1(s) \]

\[\frac{I_1s + B_1 + B_3}{I_2s + (B_2 + B_3)} \]

\[\omega_1(s) \]

\[\frac{I_1s + (B_2 + B_3)}{I_1s + (B_2 + B_3)} \]

\[\frac{I_1s + (B_2 + B_3)}{I_1s + (B_2 + B_3)} \]

Ex2: Modelo de uma hélice
\[T = \frac{1}{2} \frac{d\omega_1}{dt} + B \omega_1 + k(\theta_1 - \theta_2) \]
\[k(\theta_1 - \theta_2) = c \theta_2^2 \]

3.4.6 Sistemas Eletromecânicos

Princípios:

![Diagrama de máquina elétrica rotativa](Figura1.png)

Maquinas Elétricas Rotativas

Maquinas de C.C: São bastante utilizadas e controle, pois podem ser representadas por modelos simples e lineares em uma vasta operação.

![Diagrama de máquina de corrente contínua](Figura2.png)

\[e_f = R_f i_f + L_f \frac{di_f}{dt} \]

Geradores C.C.
\[e_f = R_i i_f + L_i \frac{di_f}{dt}; \quad e_g = k_i \phi \omega; \quad \phi = k_j i_f \text{ (linear)} \Rightarrow e_g = k_j k_i \omega \]

\[e_g = R_a i_a + R_a \frac{di_a}{dt} + e_a \]

Aplicando Laplace:

\[E_f(s) = (R_f + s L_f) I_f(s); \quad E_g(s) = k_g I_f(s); \]
\[\frac{E_g(s)}{E_f(s)} = \frac{k_g}{R_f + s L_f} \]

Motores C.C

\[T = k_2 \phi_i; \quad T = k_2 k_i i_a = J \frac{d^2 \theta}{dt^2} + B \frac{d \theta}{dt}; \quad e_b = k_\omega \omega \]

\[\frac{\theta(s)}{E_a} = ? \]

Motor C.C Controlado Pela Armadura

\[\phi = k_j i_f \]
\[T = k_2 k_j i_f i_a = k_j i_a \]
\[T = J \omega + B \omega \]
\[e_a = R_a i_a + L_a i_a + e_b; \quad e_b = k_\omega \omega \]
\[\Rightarrow E_a(s) = (R_a + s L_a) I_a(s) + k_\omega s \theta(s) \]
\[\Rightarrow \frac{\theta(s)}{E_a(s)} = \frac{k_j}{s L_a J s^2 + (J R_a + L_a B) s + R_a B + k_\omega} \]

se:
\[L_a \approx \theta \Rightarrow \frac{\theta(s)}{E_a(s)} = \frac{k_m}{s(T_m s + 1)} \]

onde:

\[k_m = \frac{k_i}{(R_a B + k_j k_i)} \] ganho do motor

\[T_m = \frac{J R_a}{(R_a B + k_j k_i)} \] constante de tempo do motor

Ex1: Gerador + motor C.C

\[e_f = R_f i_f + L_f \frac{d i_f}{dt}; \quad e_g = k_g i_f \]

\[e_g = R_a i_a + L_a \frac{d i_a}{dt} + e_b; \quad e_b = k_b \omega \]

\[T = k_i i_a = J \dot{\omega} + B \omega \]

\[k_i I_a(s) = (J s + B) \omega(s) \]

\[E_g(s) = \left[\left(R_a + s L_a \right) \frac{(J s + B)}{k_i} + k_b \right] \omega(s) \]

\[I_f(s) = \frac{[(R_a + s L_a)(J s + B) + k_b k_i] s \theta(s)}{k_j k_i} \]

\[E_f(s) = \frac{(R_j + s L_j)}{k_j k_i} \left[(R_a + s L_a)(J s + B) + k_b k_i \right] s \theta(s) \]

\[\frac{\theta(s)}{E_f(s)} = \frac{k_j k_i}{s(R_f + s L_f) \left[(R_a + s L_a)(J s + B) + k_b k_i \right]} \]

3.4.7 Sistemas Fluidicos

Esforço (e) → Pressão (P)

Fluxo (f) → Vazão (Q)
Ex1:

\[Q = c_t \frac{dP}{dt} \quad c_t = \frac{A}{\rho g} \quad P = \rho gh \]

\[Q = \frac{A}{\rho g} \frac{dh}{dt} \Rightarrow Q = \frac{A}{\rho g} \frac{dh}{dt} \]

Ex2:

Conservação de massa:

\[\frac{d(mass)}{dt} = \frac{d(\rho V)}{dt} = \rho Q \quad V \frac{d\rho}{dt} = \rho Q \quad Q = \frac{V d\rho}{\rho dt} \]

Para líquidos:

\[d\rho = \frac{\rho}{\beta} dP \quad \beta = \text{constante} \]

Para gases:

\[d\rho = \frac{\rho}{n_P} dP \quad n \approx 1.0 - 1.4 \quad \text{(depende de quão rapidamente o fluido é comprimido)} \]
Ex4: Acumulador com mola (fluido incompresível)

\[\text{acumulação} = \sum \text{entrada} - \sum \text{saída} \]

\[m = \rho V \quad \frac{dm}{dt} = \rho \frac{dV}{dt} = \rho A \frac{dx}{dt} = \rho Q \]

\[Ap_{21} = kx \quad A \frac{dp_{21}}{dt} = k \frac{dx}{dt} \quad \Rightarrow \quad \frac{dp_{21}}{dt} = \frac{k}{A} \frac{dx}{dt} \]

\[Q = A \frac{dx}{dt} = A.Ak \frac{dp_{21}}{dt} \]

\[Q = \frac{A^2}{k} \frac{dp_{21}}{dt} = c_f \frac{dp_{21}}{dt} \quad ; \quad c_f = \frac{A^2}{k} \]

Ex4: Inertância fluida

\[F = A(P_2 - P_1) = AP_{21} = m.a = \rho A L \frac{di}{dt} \]

\[Q = \frac{dv.L}{dt} = A \frac{dx}{dt} ; \quad \frac{Q}{A} = V \]

\[P_{21} = \frac{\rho L dQ}{A dt} \quad \text{análogo a} \quad V = L \frac{di}{dt} \]

Define-se \[P_{21} = \frac{d\Gamma_{21}}{dt} \]

3.4.8 Sistemas Térmicos

\[e \rightarrow \text{temperatura (T)} \]

\[f \rightarrow \text{fluxo (q)} \]

\[Q = C \Delta t = m.c.\Delta t \]

\[q = \frac{dQ}{dt} \]
Ex1: Termômetro simples

\[
\frac{\theta_0 - \theta_m}{R_i} = C_m \frac{d}{dt} (\theta_m - \theta_i)
\]

\[
\frac{\theta_0 - \theta_i - \theta_m + \theta_i}{R_i} = C_m \frac{d}{dt} (\theta_m - \theta_i)
\]

\[
\frac{\theta_{ref} - \theta}{R_i} = C_m \frac{d}{dt} \theta
\]

\[
\frac{\theta_{ref}}{s} = \theta(t) = \theta_i (1 - e^{-\frac{t}{C_s c_v}})
\]

Se \(\theta_{ref} = \frac{\theta_R}{s}\)

\[
q = C \frac{d\theta}{dt} + \frac{\theta - \theta_i}{R_1} + \frac{\theta - \theta_i}{R_2}
\]

\[
R_2 = \frac{1}{n c}
\]

Ex2: Sistema de transferência de calor

Considerações:
- Não há armazenamento de calor no isolamento
- Toda a água no recipiente tá a mesma temperatura
- \(\theta_i\) é constante e do meio ambiente

perda de calor devido ao escoamento do fluido

3.5 Diagramas de Blocos

3.5.1 Definição

Diagrama de Blocos de um sistema é uma representação ilustrada das funções desempenhadas por cada um dos componentes do sistema e do fluxo de sinais existente.

3.5.2 Componentes

BLOCO

![Diagrama de Bloco](image)

Entrada: \(U(s) \)
Saída: \(Y(s) \)

\[
Y(s) = G(s).U(s)
\]

PONTO DE JUNÇÃO

![Diagrama de Ponto de Junção](image)

PONTO DE SOMA

![Diagrama de Ponto de Soma](image)

\[d = a + b - c \]

3.5.3 Diagrama de Blocos de um Sistema em Malha Fechada

![Diagrama de Sistema em Malha Fechada](image)

- Função de Transferência de malha aberta: \(\frac{B(s)}{E(s)} = G(s)H(s) \)
- Função de Transferência de alimentação direta: \(\frac{Y(s)}{E(s)} = G(s) \)
- Função de Transferência do canal de realimentação \(\frac{B(s)}{Y(s)} = H(s) \)

- Função de Transferência de Malha Fechada \(\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} \)

\[
Y(s) = G(s)E(s) \\
E(s) = R(s) - B(s) = R(s) - H(s)Y(s) \\
Y(s) = R(s)G(s) - G(s)H(s)Y(s)
\]

\[
\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}
\]

3.5.4 Procedimento para a Construção

i. Escrever as equações que descrevem o comportamento dinâmico de cada componente;

ii. Obter a transformada de Laplace destas equações, admitindo condições iniciais nulas;

iii. Representar cada equação em transformada de Laplace na forma de um bloco;

iv. Montar os elementos em um diagrama de blocos completo.

3.5.5 Redução de um Diagrama de Blocos

Um diagrama de blocos pode ser simplificado ou reduzido por um rearranjo passo a passo, usando as regras da álgebra do diagrama de blocos:
<table>
<thead>
<tr>
<th>Diagramas de blocos originais</th>
<th>Diagramas de blocos equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
EXEMPLO:

As relações dadas são as seguintes:

\[e = K_r (r - h); \quad e_r = K_i; \quad q_i = K_i \theta_2 \]

\(K_r \) = constante de força eletromotriz do gerador (V/A)

\(K_b \) = constante de força contra-eletromotriz do motor (V.s/rad)

\(K_m \) = constante de torque do motor (N/A)

Calcular a função de transferência \(\frac{H(s)}{R(s)} \) pela redução do diagrama de blocos.

Considerar todos os parâmetros iguais a 1, exceto \(N_2 = 2 \)

\[
\frac{H(s)}{R(s)} = \frac{2K}{5s^5 + 20s^4 + 34s^3 + 28s^2 + 9s + 2K}
\]

3.6 Gráficos de Fluxo de Sinal

3.6.1 Introdução

Um gráfico de fluxo de sinal é diagrama que representa um sistema de equações lineares simultâneas.
Consiste de uma rede em que nós são conectados por ramos orientados. Cada nó representa uma variável do sistema, e cada ramo conectado entre dois nós atua como um multiplicador de sinais.

\[y = a_1 x_1 + a_2 x_2 + a_3 x_3 \]

OBS: Cada nó soma os sinais que chegam a ele, e transmite esta soma.

3.6.2 Definições

- Nó de entrada
- Nó de saída
- Caminho
- Laço
- Ganho de um caminho
- Laços que não se tocam
- Caminho direto

3.6.3 Diagrama de Fluxo de Sinal a Partir do Diagrama de Blocos

Bloco

\[\begin{align*}
U(s) & \rightarrow G(s) & Y(s) \\
U(s) & \rightarrow G(s) & Y(s)
\end{align*} \]

Ponto de Tomada
Ponto de Soma

\[d = a + b - c \]

Sistema de Controle de Malha Fechada

\[
\begin{align*}
R(s) & \rightarrow E(s) \\
G(s) & \rightarrow Y(s) \\
B(s) & \rightarrow H(s)
\end{align*}
\]

3.6.4 **Fórmula de Ganho de Mason**

Qualquer função de transferência entre um nó de entrada e um nó de saída pode ser calculada utilizando a fórmula de ganho de Mason:

\[
P = \frac{1}{\Delta} \sum_k P_k \Delta_k
\]

onde:

- \(P \) → Ganho total entre um nó de entrada e um nó de saída
- \(P_k \) → Ganho do k-ésimo caminho direto
- \(\Delta \) → Determinante do gráfico = 1 - (soma de todos os ganhos dos laços individuais) - (soma dos produtos dos ganhos de todas as combinações possíveis de dois laços que não se tocam) + (soma dos produtos dos ganhos de todas as combinações possíveis de três laços que não se tocam) - ...
- \(\Delta_k \) → Cofator do k-ésimo determinante de caminho direto do gráfico com os laços que tocam o k-ésimo caminho direto removidos, isto é, o cofator \(\Delta_k \) é obtido de \(\Delta \) removendo os laços que tocam o caminho \(P_k \).
4 ESTABILIDADE

4.1 Definição (BIBO - Bounded Input, Bounded Output)

“Um sistema qualquer é estável se e somente se para toda e qualquer entrada limitada, a saída correspondente também for limitada”.

Teorema

“Um sistema linear, invariante no tempo e com parâmetros concentrados é estável se e somente se o módulo de sua resposta ao impulso unitário for integrável em um intervalo infinito, isto é, \(\int_0^\infty |g(t)|dt \) para um valor finito”.

“Um sistema linear a malha fechada, invariante no tempo, a parâmetros concentrados é estável se e somente se todos os pólos de sua função de transferência de malha fechada estão no semiplano esquerdo aberto do plano complexo \(s \)”.

\[1 + G(s)H(s) = 0 \] é chamada de equação característica do sistema de controle de malha fechada

As raízes desta equação são os pólos de malha fechada deste sistema.

4.2 Critério de Estabilidade de Routh

Considere a seguinte função de transferência de malha fechada:

\[
\frac{Y(s)}{R(s)} = \frac{b_0s^n + b_1s^{n-1} + \ldots + b_{m-1}s + b_m}{a_0s^n + a_1s^{n-1} + \ldots + a_{m-1}s + a_m} = \frac{N(s)}{D(s)}
\]

Montar a seguinte tabela:

\[
\begin{array}{cccccccccc}
 s^n & a_0 & a_2 & a_4 & a_6 & \ldots \\
 s^{n-1} & a_1 & a_3 & a_5 & a_7 & \ldots \\
 s^{n-2} & b_1 & b_2 & b_3 & b_4 & \ldots \\
 s^{n-3} & c_1 & c_2 & c_3 & c_4 & \ldots \\
 s^{n-4} & d_1 & d_2 & d_3 & d_4 & \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 s^2 & e_1 & e_2 & & & \\
 s^1 & f_1 & & & & \\
 s^0 & g_1 & & & & \\
\end{array}
\]

onde: \(b_1 = \frac{a_1a_2 - a_0a_3}{a_1} \); \(b_2 = \frac{a_1a_4 - a_0a_5}{a_1} \); \(b_3 = \frac{a_1a_6 - a_0a_7}{a_1} \); \ldots
O cálculo dos b's continua até que os restantes sejam nulos. Para os c's, d's e e's, temos:

\[
c_1 = \frac{b_1a_3 - a_1b_2}{b_1}; \quad c_2 = \frac{b_1a_5 - a_1b_3}{b_1}; \quad c_3 = \frac{b_1a_7 - a_1b_4}{b_1}; \quad \ldots
\]

\[
d_1 = \frac{c_1b_2 - b_1c_2}{c_1}; \quad d_2 = \frac{c_1b_3 - b_1c_3}{c_1}; \quad \ldots
\]

O processo continua até que a n-ésima linha tenha sido completada.

CRITÉRIO DE ESTABILIDADE DE ROUTH

“O número de raízes da equação característica com partes reais positivas é igual ao número de mudanças de sinal dos coeficientes da 1ª coluna da tabela”.

EXEMPLO:

\[D(s) = s^4 + 2s^3 + 3s^2 + 4s + 5\]

\[
\begin{array}{ccc}
s^4 & 1 & 3 & 5 \\
s^3 & 2 & 4 & 0 \\
s^2 & 1 & 5 \\
s^1 & -6 & 0 \\
s^0 & 5 \\
\end{array}
\]

Duas raízes instáveis

- **Casos Especiais**

a) Primeiro termo de uma linha é nulo:

- Substituir o termo nulo por um número positivo muito pequeno e continuar a completar a tabela ou

- Multiplicar o polinômio por $(s+1)$ e construir a tabela
EXEMPLO:

\[D(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 \]

\(s^5 \)	1	2	11
\(s^4 \)	2	4	10
\(s^3 \)	\(\varepsilon \)	6	0
\(s^2 \)	\(c_i \)	10	
\(s^1 \)	\(d_i \)	0	
\(s^0 \)	10		

\[c_i = \frac{4\varepsilon - 12}{\varepsilon} \rightarrow -\frac{12}{\varepsilon} ; \quad d_i = \frac{6c_i - 10\varepsilon}{c_i} \rightarrow 6 \]

Duas raízes instáveis

b) Todos os coeficientes em uma linha são nulos:

- O resto da tabela pode ser continuado formando um polinômio auxiliar com os coeficientes da última linha e usando os coeficientes da derivada deste polinômio na linha seguinte.

EXEMPLO:

\[D(s) = s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 \]

\(s^5 \)	1	24	-25
\(s^4 \)	2	48	-50
\(s^3 \)	0	0	0
\(s^2 \)	\(\varepsilon \)	8	96
\(s^1 \)	\(\varepsilon \)	24	-50
\(s^0 \)	\(\varepsilon \)	112.7	0
\(s^0 \)	\(\varepsilon \)	-50	

Um pólo instável
EXERCÍCIO

Determinar os valores de K para os quais o sistema de controle de malha fechada abaixo seja estável

\[
\frac{Y(s)}{R(s)} = \frac{K}{s(s^2+s+1)(s+2)}
\]

\[
Y(s) = \frac{K}{s^4 + 3s^3 + 2s + K}
\]

\[
\begin{array}{c|ccc}
 s^4 & 1 & 3 & K \\
 s^3 & 3 & 2 & 0 \\
 s^2 & 7 & K & & \\
 s^1 & 3 & & & \\
 s^0 & 2 - \frac{9}{7}K & 0 & & \\
 & & K & & \\
\end{array}
\]

\[2 - \frac{9}{7}K > 0 \quad \rightarrow \quad K < \frac{14}{9}\]

\[K > 0\]

5 CARACTERÍSTICAS EM MALHA FECHADA

Existem basicamente duas grandes vantagens em utilizarmos um sistema de controle a malha fechada ao invés de malha aberta: redução da sensibilidade do sistema à variações de parâmetros e maior rejeição à distúrbios.

Por outro lado, existem também desvantagens em se utilizar realimentação, tais como: maior número de componentes e perda de ganho.

Estas vantagens e desvantagens serão analisadas neste item.
5.1 Sensibilidade à Variação de Parâmetros

Para ilustrar o efeito da variação de parâmetros, consideraremos uma mudança de $\Delta G(s)$ na função de transferência da planta $G(s)$.

Para o caso de um sistema em malha aberta a mudança correspondente na saída será

$$
\Delta Y(s) = \Delta G(s) R(s)
$$

No caso de um sistema de malha fechada, temos:

$$
Y(s) + \Delta Y(s) = \frac{G(s) + \Delta G(s)}{1 + (G(s) + \Delta G(s))H(s)} R(s)
$$

Então, a mudança na saída será

$$
\Delta Y(s) = \frac{\Delta G(s)}{(1 + GH(s) + \Delta GH(s))(1 + GH(s))} R(s)
$$

Quando $GH(s) >> \Delta GH(s)$, temos

$$
\Delta Y(s) = \frac{\Delta G(s)}{(1 + GH(s))^2} R(s)
$$

Ou seja, a mudança na saída é reduzida por um fator $(1 + GH(s))^2$ que é usualmente muito maior que 1 na faixa de frequências de interesse.

A sensibilidade de um sistema é definida como a razão entre a mudança percentual na função de transferência de malha fechada $G_{mf}(s)$ e a mudança percentual na função de transferência da planta $G(s)$.
\[S = \frac{\Delta G_mf(s)/G_mf(s)}{\Delta G(s)/G(s)} \]

No limite, para pequenas variações incrementais, temos: \[S = \frac{\partial G_mf / G_mf}{\partial G / G} \]

Assim, a sensibilidade da função de transferência de malha fechada a variação em \(G \) é:
\[S_G = \frac{\partial G_mf}{\partial G} \frac{G}{G_mf} = \frac{1}{1 + GH} \]

e a sensibilidade à variação em \(H \) é:
\[S_H = \frac{\partial G_mf}{\partial H} \frac{H}{G_mf} = \frac{-GH}{1 + GH} \]

Quando \(GH \) é elevado, a sensibilidade aproxima-se da unidade e as mudanças em \(H(s) \) afetam diretamente a resposta do sistema. Assim, é necessário utilizar componentes precisos na malha de realimentação.

5.2 Efeito de Perturbações

\[\frac{Y(s)}{P(s)} = 1 \]

\[\frac{Y(s)}{P(s)} = \frac{1}{1 + GH(s)} \]
Ocorre uma redução no efeito de perturbações na saída do sistema quando o mesmo está em malha fechada em relação a malha aberta.

Existem algumas vantagens adicionais em se utilizar realimentação, as quais serão discutidas futuramente: possibilidade de estabilização, de melhoria no desempenho transitório e de melhoria no desempenho em regime permanente de um sistema.

5.3 O Custo da Realimentação

As vantagens introduzidas com o uso da realimentação têm um custo, o qual deve ser analisado.

Basicamente, as principais desvantagens da realimentação em relação a malha aberta são:

- **Aumento da Complexidade**

 Em malha fechada tem-se a necessidade do uso de um maior número de componentes no sistema. Como exemplo, citamos o sensor, geralmente o componente mais caro em um sistema de controle.

- **Perda de Ganho**

 O ganho de um sistema de malha fechada é reduzido por um fator \(1/(1+GH)\) em relação a um sistema de malha aberta.

- **Possibilidade de Instabilidade**

 Um sistema que em malha aberta é estável, pode não ser sempre estável em malha fechada. Como exemplo, citamos o exemplo do controle de nível visto anteriormente, onde a estabilidade do sistema em malha fechada dependia do ganho do amplificador K.

6 ANÁLISE DE DESEMPENHO TRANSITÓRIO E EM REGIME ESTACIONÁRIO DE SISTEMAS

A resposta temporal de um sistema consiste de duas partes: a resposta transitória e a resposta em regime permanente (estacionária).

- **Resposta Transitória** → parte da resposta que vai do estado inicial até o estado final.
- **Resposta Estacionária** → maneira com a saída se comporta quando t tende a infinito.
6.1 Análise de Resposta Transitória

6.1.1 Sistemas de Primeira Ordem

Considere a seguinte equação diferencial de 1ª ordem:

\[a \cdot c(t) + b \cdot c(t) = d \cdot r(t) \quad a \neq 0 \]

onde \(c(t) \) é a saída do sistema e \(r(t) \) é a entrada do sistema.

Definindo

\[\frac{a}{b} = T \quad \text{(constante de tempo do sistema)} ; \quad e \quad \frac{d}{b} = K \quad \text{(ganho do sistema)} \]

temos

\[T \cdot c(t) + c(t) = K \cdot r(t) \]

Assim a função de transferência é:

\[\frac{C(s)}{R(s)} = G(s) = \frac{K}{T_s + 1} \]

Considerando \(K = 1 \), temos:

\[G(s) = \frac{1}{T_s + 1} \]

Resposta ao Degrau Unitário

\[C(s) = \frac{1}{sT + 1} - \frac{1}{s} - \frac{1}{s + 1/T} \]

\[c(t) = 1 - e^{-t/T} \]
Resposta a Rampa Unitária

\[C(s) = \frac{1}{s^2} \frac{1}{Ts + 1} = \frac{1}{s^2} \frac{T^2}{Ts + 1} \]

\[c(t) = t - T + Te^{-t/T} \]

\[e(t) = r(t) - c(t) = T(1 - e^{-t/T}) \]

Logo: \(e(\infty) = T \)

Exemplos de sistemas de 1ª ordem: circuito RC, reservatório com válvula, sistema de temperatura, etc.

6.1.2 **Sistemas de Segunda Ordem**

Considere a seguinte equação diferencial de segunda ordem:

\[a \ddot{c}(t) + b \dot{c}(t) + dc(t) = er(t) \]

Definindo: \(\frac{b}{a} = 2\zeta \omega_n \); \(\frac{d}{a} = \omega_n^2 \); \(\frac{e}{a} = K \)
onde \(\xi \) é o fator de amortecimento, \(\omega_n \) é a frequência natural e \(K \) é o ganho do sistema, temos:

\[
c(t) + 2\xi \omega_n c(t) + \omega_n^2 c(t) = Kr(t)
\]

Aplicando Laplace com C.I. nulas:

\[
\frac{C(s)}{R(s)} = \frac{K}{s^2 + 2\xi \omega_n s + \omega_n^2}
\]

Considerando \(K = \omega_n^2 \):

\[
\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}
\]

Pólos do sistema:

\[
s^2 + 2\xi \omega_n s + \omega_n^2 = 0 \quad \Rightarrow \quad s = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}
\]

Exemplos de sistemas de 2ª ordem: circuito RLC, sistema massa-mola-atrito, servomecanismo de posição...

Temos três casos:

a) \(0 < \xi < 1 \): Caso SUBAMORTECIDO. O sistema tem dois pólos complexos conjugados e apresenta oscilações

b) \(\xi = 1 \): Caso CRITICAMENTE AMORTECIDO. Dois pólos reais e iguais. A partir deste valor de \(\xi \) o sistema passa a não ter mais oscilações.
c) $\xi > 1$: Caso SOBREAMORTECIDO. Dois pólos reais e distintos.

A medida que ξ aumenta, o comportamento do sistema se aproxima do comportamento de um sistema de 1ª ordem.

Resposta ao Degrau Unitário

a) Caso Subamortecido:

$$c(t) = 1 - e^{-\xi \omega_n t} \cdot \frac{\sqrt{1 - \xi^2}}{\sqrt{1 - \xi^2}} \cdot \arctan\left(\frac{\sqrt{1 - \xi^2}}{\xi}\right)$$

onde: $\omega_n = \sqrt{1 - \xi^2}$ é a frequência natural amortecida.

Se $\zeta = 0$, então: $c(t) = 1 - \cos \omega_n t$

b) Caso criticamente amortecido:

$$c(t) = 1 - e^{-\omega_n t} (1 + \omega_n t)$$

c) Caso sobreamortecido:

$$c(t) = 1 + \frac{\omega_n}{2 \sqrt{\xi^2 - 1}} \left(\frac{e^{s_1 t} - e^{s_2 t}}{s_1 - s_2}\right)$$

onde $s_1 = \left(\xi + \sqrt{\xi^2 - 1}\right)\omega_n$ e $s_2 = \left(\xi - \sqrt{\xi^2 - 1}\right)\omega_n$

A figura abaixo mostra as curvas de resposta ao degrau unitário de um sistema de 2ª ordem em função do fator de amortecimento ξ.
• ESPECIFICAÇÕES DE RESPOSTA TRANSITÓRIA

Definições

a) Tempo de Subida, \(t_s \): É o tempo necessário para que a saída atinja pela primeira vez o seu valor final.
\[t_r = \frac{\pi - \beta}{\omega_d} \]

onde \(\beta = \tan^{-1} \sqrt{1 - \xi^2} / \xi \)

b) **Tempo de Pico**, \(t_p \): É o instante de tempo em que a resposta atinge o primeiro pico do sobre-sinal.

\[t_p = \frac{\pi}{\omega_d} \]

c) **Sobre-Sinal Máximo** (*Overshoot*), \(M_p \): É o valor máximo de pico da curva de resposta medido a partir do valor final.

\[M_p(\%) = \frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\% \]

\[c(t_p) = 1 + e^{-\left(\frac{\pi}{\sqrt{1 - \xi^2}}\right)} \]

Logo:

\[M_p(\%) = 100e^{-\left(\frac{\xi \pi}{\sqrt{1 - \xi^2}}\right)} \]

OBS: O sobre-sinal máximo depende somente do valor do coeficiente de amortecimento \(\xi \).

d) **Tempo de Acomodação** (estabilização), \(t_s \): É o tempo necessário para que a resposta alcance e permaneça dentro de uma faixa em torno do valor final. Esta faixa é especificada por uma porcentagem absoluta do valor final (2% ou 5%).

\[t_s = \frac{4}{\xi \omega_n} \]

(critério de 2%)

\[t_s = \frac{3}{\xi \omega_n} \]

(critério de 5%)

OBS: As curvas e especificações calculadas são válidas somente para sistemas de 2ª ordem, cuja função de transferência apresenta dois pólos e nenhum zero.
6.1.3 Sistemas de Ordem Superior

Considere a resposta ao degrau unitário de um sistema de ordem superior:

\[C(s) = \frac{K \prod_{i=1}^{m} (s + z_i)}{s \prod_{j=1}^{q} (s + p_j) \prod_{k=1}^{r} \left(s^2 + 2 \xi_k \omega_k s + \omega_k^2 \right)} \]

onde \(q + 2r = n \).

Expandindo a equação acima em frações parciais, temos:

\[C(s) = \frac{a}{s} + \sum_{j=1}^{q} \frac{a_j}{s + p_j} + \sum_{k=1}^{r} \frac{b_k (s + \xi_k \omega_k) + c_k \omega_k \sqrt{1 - \xi_k^2}}{s^2 + 2 \xi_k \omega_k s + \omega_k^2} \]

Logo,

\[c(t) = a + \sum_{j=1}^{q} a_j e^{-p_j t} + \sum_{k=1}^{r} b_k e^{-\xi_k \omega_k t} \cos(\omega_k \sqrt{1 - \xi_k^2} t) + \sum_{k=1}^{r} c_k e^{-\xi_k \omega_k t} \sin(\omega_k \sqrt{1 - \xi_k^2} t) \]

- A curva de resposta de um sistema estável de ordem superior é a soma de um certo número de curvas exponenciais e curvas senoidais amortecidas

- O tipo de resposta transitória é determinado pelos pólos de malha fechada, ao passo que a forma de resposta transitória é determinada principalmente pelos zeros de malha fechada.

EXEMPLO:

\[C(s) = \frac{K(s + a)}{s(s + b)(s + c)} = \frac{Ka}{bc} \frac{K(a - b)}{s + b} \frac{K(a - c)}{s + c} \]

- **PÓLOS DOMINADOS E DOMINANTES**

Se um sistema é estável, então os pólos que estão longe do eixo jo tem partes reais negativas de valor grande, e os termos exponenciais correspondentes a estes pólos decaem rapidamente a zero.
A dominância relativa de pólos de malha fechada é determinada pela relação das partes reais dos pólos de malha fechada, bem como pelos valores relativos dos resíduos calculados nos pólos de malha fechada. O valor dos resíduos depende tanto dos pólos quanto dos zeros de malha fechada.

Se as relações entre as partes reais dos pólos excedem cinco e não existem zeros na vizinhança, então os pólos de malha fechada mais próximos do eixo \(j\omega \) dominarão a resposta transitória. Estes pólos são chamados de DOMINANTES e os mais distantes do eixo \(j\omega \) são chamados de DOMINADOS.

EXEMPLO:

\[G(s) = \frac{20}{(s + 1)(s + 2)(s + 10)} \]

Resposta ao degrau unitário:

\[C(s) = \frac{20}{s(s + 1)(s + 2)(s + 10)} = \frac{1}{s} - \frac{20/9}{s + 1} + \frac{10/8}{s + 2} - \frac{2/72}{s + 10} \]

\[c(t) = 1 - \frac{20}{9} e^{-t} + \frac{10}{8} e^{-2t} - \frac{2}{72} e^{-10t} \]

Este sistema é dominante de segunda ordem, pois o pólo \(s = -10 \) está muito distante do eixo \(j\omega \). Assim, podemos fazer uma aproximação para um sistema de segunda ordem.

Para desprezar o efeito de um pólo em uma função de transferência, devemos fazer \(s = 0 \) na parte correspondente a este pólo.

No exemplo, temos:

\[G(s) \approx \frac{20}{(s + 1)(s + 2)(0 + 10)} = \frac{2}{(s + 1)(s + 2)} \]

Assim, a resposta ao degrau unitário é:

\[C(s) \approx \frac{2}{s(s + 1)(s + 2)} = \frac{1}{s} - \frac{2}{s + 1} + \frac{1}{s + 2} \]

\[c(t) \approx 1 - 2e^{-t} + e^{-2t} \]

A figura abaixo mostra as curvas exata e aproximada:
curva exata

curva aproximada

c(t)

tempo (s)
6.2 Desempenho em Regime Permanente

A análise do desempenho em regime permanente de um sistema consiste no estudo do comportamento da resposta do sistema quando o tempo tende a infinito.

6.2.1 Introdução

- **CLASSIFICAÇÃO DE SISTEMAS**

Podemos classificar um sistema de controle acordo com a sua habilidade para seguir entradas em degrau, rampa, parábola, etc...

Considerando um sistema em malha fechada da forma:

\[
\begin{array}{c}
R(s) \\
\end{array} + \begin{array}{c} E_a(s) \\
\end{array} \begin{array}{c} G(s) \\
\end{array} \begin{array}{c} C(s) \\
\end{array} \begin{array}{c} B(s) \\
\end{array} \begin{array}{c} H(s) \\
\end{array}
\]

onde

\[
G(s)H(s) = \frac{K \prod_{i=1}^{m} (s + z_i)}{s^N \prod_{i=1}^{n-N} (s + p_i)}
\]

O desempenho do sistema quando \(s \) tende a zero depende do número de integradores \(N \). O número de integradores é frequentemente chamado de TIPO do sistema \(N \).

- **ERRO ESTACIONÁRIO**

Considerando o sistema de controle em malha fechada, temos que o erro atuante \(E_a(s) \) é dado por:

\[
E_a(s) = R(s) - C(s)H(s) = R(s) - E_a(s)G(s)H(s)
\]

logo:

\[
E_a(s) = \frac{1}{1 + G(s)H(s)} R(s)
\]

Aplicando o teorema do valor final, temos que o erro atuante estacionário ou de regime é dado por:
\[e_{ss} = \lim_{t \to \infty} e_a(t) = \lim_{s \to 0} sE_a(s) \]

\[e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)} \]

OBS: O erro atuante \(E_a(s) \) só coincide com o erro \(E(s) = R(s) - C(s) \) quando \(H(s) = 1 \).

O erro \(E(s) \) é dado por:

\[E(s) = R(s) - C(s) = \frac{1 + G(s)H(s) - G(s)}{1 + G(s)H(s)} R(s) \]

6.2.2 Entrada Degrau

O erro de regime para uma entrada degrau de magnitude \(A \) é:

\[e_{ss} = \lim_{s \to 0} \frac{s(A/s)}{1 + G(s)H(s)} = \frac{A}{1 + G(0)(H(0))} \]

Definindo a constante de erro de posição estático \((K_p) \) como:

\[K_p = \lim_{s \to 0} G(s)H(s) = G(0)H(0) \]

o erro de regime é dado por:

\[e_{ss} = \frac{A}{1 + K_p} \]

Para um sistema tipo 0

\[e_{ss} = \frac{A}{1 + K} \quad \text{finito} \]

Para um sistema de tipo 1 ou maior \(N \geq 1 \)

\[e_{ss} = \frac{1}{1 + \infty} = 0 \quad \text{nulo} \]

6.2.3 Entrada Rampa

O erro de regime para uma entrada rampa de inclinação \(A \) é:

\[e_{ss} = \lim_{s \to 0} \frac{s(A/s^2)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{sG(s)H(s)}{s + sG(s)H(s)} = \lim_{s \to 0} \frac{A}{sG(s)H(s)} \]

Definindo a constante de erro de velocidade estático \((K_v) \) como:

\[K_v = \lim_{s \to 0} sG(s)H(s) \]

o erro de regime para uma entrada rampa é dado por:

\[e_{ss} = \frac{A}{K_v} \]
Para um sistema tipo 0
\[e_{ss} = \frac{A}{0} \to \infty \] infinito

Para um sistema tipo 1
\[e_{ss} = \frac{1}{K} \] finito

Para um sistema de tipo 2 ou maior \(N \geq 2 \)
\[e_{ss} = \frac{1}{\infty} = 0 \] nulo

6.2.4 **Entrada Parábola**

O erro de regime para uma entrada parábola \(r(t) = At^2/2 \) é:

\[e_{ss} = \lim_{s \to 0} s \left(\frac{A}{s^3} \right) = \lim_{s \to 0} \frac{A}{s + s^2G(s)H(s)} = \lim_{s \to 0} \frac{A}{s^2G(s)H(s)} \]

Definindo a constante de erro de aceleração estático (\(K_a \)) como:

\[K_a = \lim_{s \to 0} s^2G(s)H(s) \]

o erro de regime para uma entrada parábola é dado por:

\[e_{ss} = \frac{A}{K_a} \]

Para um sistema tipo 0 ou 1 \(N \leq 1 \)
\[e_{ss} = \frac{A}{0} \to \infty \] infinito

Para um sistema tipo 2
\[e_{ss} = \frac{1}{K} \] finito

Para um sistema de tipo 3 ou maior \(N \geq 3 \)
\[e_{ss} = \frac{1}{\infty} = 0 \] nulo

RESUMO DE ERROS ESTACIONÁRIOS

<table>
<thead>
<tr>
<th></th>
<th>Entrada Degrau (r(t) = A)</th>
<th>Entrada Rampa (r(t) = At)</th>
<th>Entrada Parábola (r(t) = At^2/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 0</td>
<td>(\frac{A}{1 + K_p})</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Tipo 1</td>
<td>0</td>
<td>(\frac{A}{K_v})</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>0</td>
<td>0</td>
<td>(\frac{A}{K_u})</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
7 CONTROLADORES PID

7.1 Introdução

- **Controladores Série**

 Em geral, o projeto de controladores série é mais simples que o de controladores (compensadores) por realimentação. Entretanto, normalmente exige amplificadores adicionais para aumentar o ganho do sistema.

 Exemplos:
 - controladores não-lineares: relé, relé com histerese, etc.
 - controladores lineares: combinação das ações PID (Proporcional, Integral, Derivativa), atraso de fase, avanço de fase.

- **Controladores por Realimentação**

 Em geral, o número de componentes necessários na compensação por realimentação será menor que o número de componentes na compensação série.

 Exemplos:
 - Realimentação tacométrica, realimentação dos estados.

7.2 Ações de Controle PID

a) Controle Proporcional (P)

\[
\begin{align*}
 u(t) &= Ke(t); \quad U(s) = KE(s) \\
 \text{onde: } e(t) &= r(t) - y(t) = SP - PV
\end{align*}
\]

- O controlador proporcional é um amplificador, com ganho ajustável (K);
- O aumento do ganho K, diminui o erro de regime;
- Em geral, o aumento de K torna o sistema mais oscilatório, podendo instabilizá-lo;
- Melhora o regime e piora o transitório, sendo bastante limitado.

Ex:

\[
\frac{1}{Ts+1}
\]

Para entrada degrau unitário \(\Rightarrow e_{n} = \frac{1}{1 + K} \)

O erro será nulo somente para \(K \rightarrow 0 \), o que nem sempre é possível.

Muitos instrumentos usam um termo alternativo, **Banda Proporcional (PB)**, ao invés do ganho: \(PB = \frac{100}{K} \)

O termo Banda Proporcional se refere à faixa sobre a qual o erro deve variar para que a saída do controlador (MV) excurcione em toda a sua faixa.

O ganho do controlador pode ser feito positivo ou negativo. Um ganho positivo resulta em uma saída do controlador (MV) **diminuindo** quando a variável de processo (PV) está **crescendo** (ação **REVERSA**). Para um ganho negativo a saída do controlador (MV) **diminui** quando a variável de processo (PV) **crece** (ação **DIRETA**). O sinal correto depende da ação do transmissor (usualmente direta), da ação do válvula (ar-para-abrir (AO) ou ar-para-fechar (AC)) e do efeito do sinal de controle (CS) na variável de processo (PV).

Como exemplo suponha o processo de temperatura da saída de um trocador de calor mostrado na figura abaixo:
Neste caso, a ação correta do controlador é a ação REVERSA (ganho positivo), pois todas as outras ações envolvidas são positivas.

b) Controlador Proporcional + Integral (PI)

A ação integral do controlador move a variável de controle (CS) baseada na integral no tempo do erro

\[u(t) = K_p e(t) + \frac{1}{\tau_i} \int_0^t e(\tau) d\tau ; \]

\[U(s) = \frac{(K_p s + K_i)}{s} E(s) \]

onde \(K_i = \frac{1}{\tau_i} \) e \(\tau_i \) é o tempo integrativo ou tempo de reset com unidade da ordem de minutos.

- Zera o erro de regime, pois aumenta o tipo do sistema em 1 unidade;
- É utilizado quando temos resposta transitória aceitável e resposta em regime insatisfatória;
- Adiciona um pólo em \(p = 0 \) e um zero em \(z = -K_i/K_p \);
- Como aumenta a ordem do sistema, temos possibilidade de instabilidade diferente do sistema original. Pode degradar o desempenho do controlador em malha fechada.

Ex:
Para entrada degrau unitário \(\Rightarrow e_{ss} = \frac{1}{1 + \infty} = 0 \)

Muitos controladores são calibrados em minutos (ou minutos/repetição, um termo que se origina do teste de colocar o controlador em um erro fixo e verificar quanto tempo a ação integral leva para produzir a mesma mudança na saída do controlador que o controlador proporcional tem com ganho 1; a integral repete a ação do controlador proporcional).

c) Controlador Proporcional + Derivativo (PD)

\[
U(s) = (K_p + K_ds)E(s)
\]

onde \(K_d = \tau_d \) é a constante derivativa em minutos.

- Leva em conta a taxa de variação do erro;
- É utilizado quando temos resposta em regime aceitável e resposta transitória insatisfatória;
- Adiciona um zero em \(z = -\frac{K_p}{K_d} \);
- Introduz um efeito de antecipação no sistema, fazendo com que o mesmo reaja não somente à magnitude do sinal de erro, como também à sua tendência para o instante futuro, iniciando, assim, uma ação corretiva mais cedo;
- A ação derivativa tem a desvantagem de amplificar os sinais de ruído, o que pode causar um efeito de saturação nos atuadores do sistema.

Ex:

\[
\frac{C(s)}{R(s)} = \frac{(K_p + K_ds)}{Js^2 + K_ds + K_p}
\]
d) Controlador Proporcional + Integral + Derivativo (PID)

\[U(s) = \left(K_p + \frac{K_i}{s} + K_d s \right) E(s) \quad \Rightarrow \quad \frac{U(s)}{E(s)} = \frac{K_d s^2 + K_p s + K_i}{s} \]

- É utilizado quando temos resposta transitória e em regime insatisfatórias;
- Adiciona um pólo em p=0 e 2 zeros, que dependem dos parâmetros do controlador;

A ação derivativa pode ser usada sobre o sinal de erro (SP-PV) ou sobre a variável de processo (PV). Usualmente é usada sobre esta última. Além disso, geralmente a ação derivativa é separada da ação PI (veja figura abaixo).
7.3 Implementação Eletrônica Analógica de Controladores PID

- **Amplificador Operacional**

- **Inversor**

\[
e_o = k(e_2 - e_1) \quad k \approx 10^5 - 10^6
\]

Características: \(Z_{in} = \infty \) e \(Z_{out} = 0 \)

\[
i_1 = \frac{e_1 - e'}{R_1} \quad i_1 = \frac{e' - e_o}{R_2} \quad i_1 = i_2 \quad k(0 - e') = e_o \quad e' \approx 0
\]

Logo:

\[
\frac{e_1}{R_1} = -\frac{e_o}{R_2} \quad \text{ou} \quad e_o = \frac{R_2}{R_1} e_1
\]

De uma maneira geral:

\[
\frac{E_o(s)}{E_i(s)} = \frac{Z_2(s)}{Z_1(s)}
\]

Tabela de Ações de Controle:
7.4 Modificações das Ações de Controle

- **PID Original**

- **Parte Derivativa - Filtro**

\[
\frac{T_d s}{1 + \gamma T_d s}; \text{ com } \gamma = 0.1
\]

- **PI-D**
Objetivo: Não derivar variações bruscas no sinal de referência.

- I-PD

Objetivo: Não derivar, nem amplificar variações bruscas no sinal de referência.

8 ANÁLISE DE SISTEMAS POR VARIÁVEIS DE ESTADO

8.1 Descrição Por Variáveis de Estado

É aplicável a sistemas de múltiplas entradas e múltiplas saídas, que podem ser lineares ou não-lineares, invariantes ou variantes no tempo e com condições iniciais não-nulas.

O estado de um sistema no instante t_0 é a quantidade de informação em t_0 que, junto com a entrada $u(t)$ em $t \geq t_0$, determina univocamente o comportamento do sistema para todo $t \geq t_0$.

$$
\mathbf{x}(t) = \begin{bmatrix}
 x_1(t) \\
 x_2(t) \\
 \vdots \\
 x_n(t)
\end{bmatrix} \Rightarrow
\begin{cases}
 \mathbf{x}(t) \to \text{Vetor de estado} \\
 x_i(t) \to \text{Variável de estado}
\end{cases}
$$
Na representação por variáveis de estado:

\[
\mathbf{x}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \quad \text{Equação de Estado (dinâmica do sistema)}
\]
\[
\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \quad \text{Equação de Saída (observação do sistema)}
\]

Aplicando Transformada de Laplace temos:
\[
(sI - A)\mathbf{X}(s) = B\mathbf{U}(s) + \mathbf{X}(0)
\]
\[
\mathbf{X}(s) = (sI - A)^{-1}B\mathbf{U}(s) + (sI - A)^{-1}\mathbf{X}(0)
\]

Para condições iniciais nulas \(\mathbf{X}(0) = 0 \)
\[
\mathbf{Y}(s) = \left[C(sI - A)^{-1}B + D \right] \mathbf{U}(s)
\]
\[
\mathbf{Y}(s) = \mathbf{G}(s) \mathbf{U}(s)
\]
onde:
\[
\mathbf{G}(s) = C(sI - A)^{-1}B + D \quad \text{Matriz Função de Transferência}
\]

8.2 Solução da Equação de Estado

- **Caso Escalar**

\[
\dot{x}(t) = ax(t) + bu(t) \quad \overset{L^{-1}}{\Rightarrow} \quad X(s) = (s - a)^{-1}x(0) + (s - a)^{-1} B U(s) \Rightarrow
\]
\[
\Rightarrow x(t) = L^{-1}\{X(s)\} = e^{st} x(0) + b L^{-1}\{(s - a)^{-1}\} u(t) \Rightarrow
\]
\[
x(t) = e^{st} x(0) + \int_{0}^{t} e^{s(t-\tau)} bu(\tau) d\tau
\]
• **Caso Vetorial**

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]

\[
x(t) = e^{At}x(0) + \int_{0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau
\]

onde: \(e^{At} = L^{-1}\left\{ (sI - A)^{-1} \right\}\)

A matriz exponencial \(e^{At}\) pode ser calculada através da série:

\[
e^{At} = I + At + \frac{A^2t^2}{2!} + \ldots + \frac{A^kt^k}{k!} + \ldots
\]

que converge para todo \(t\) finito e para todo \(A\).

8.3 Estabilidade

Considere uma representação em variáveis de estado de um sistema SISO:

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]

\[
y(t) = Cx(t) + du(t)
\]

- Teorema

Um sistema é estável se quando \(u(t) = 0\), para todo \(x(0)\), temos que \(\lim_{t \to \infty} x(t) = 0\)

OBS: se \(u(t) = 0 \Rightarrow x(t) = e^{At}x(0)\)

- Corolário

Um sistema é estável se todos os autovalores da matriz \(A\) apresentam parte real negativa.

OBS: Os autovalores de uma matriz \(A\) são as raízes de sua equação característica:

\[
\Delta(s) = \det(sI - A) = 0
\]
EXEMPLO:

\[
\begin{bmatrix}
-1 & 1 & 3 \\
0 & -3 & 4 \\
0 & 0 & 2 \\
\end{bmatrix}
\begin{bmatrix}
x \\
x \\
x \\
\end{bmatrix}
+
\begin{bmatrix}
0 \\
0 \\
1 \\
\end{bmatrix}
\]

\[
\text{det}(sI - A) =
\begin{bmatrix}
s + 1 & -1 & -3 \\
0 & s + 3 & -4 \\
0 & 0 & s - 2 \\
\end{bmatrix}
= (s + 1)(s + 2)(s - 2)
\]

Logo, o sistema é instável.

8.4 Controlabilidade

- **Definição**

O sistema \((A, B, C, d)\) é controlável se, quaisquer que sejam \(x(0)\) e \(x(T)\), existe \(u(t)\) \(0 \leq t \leq T\) que transfere o estado \(x(0)\) para o estado \(x(T)\) em um tempo finito.

- **Teorema**

O sistema \((A, B, C, d)\) é controlável se e somente se o posto da matriz de controlabilidade \(U (n \times np)\) associada é igual a \(n\).

\[U = [B \ AB \ A^2B ... A^{n-1}B]\]

OBS: Uma matriz \(R\) é dita possuir posto (rank), \(\text{\(\rho\)(R)}, igual a \(m\), se existir uma submatriz \(M (m \times m)\) de modo que o determinante de \(M\) é não nulo e o determinante de todas as submatrizes \(r \times r\) (onde \(r > m\)) de \(R\) é zero.

Exemplo:

\[
\begin{bmatrix}
1 & -1 \\
1 & -1 \\
\end{bmatrix}
\]
\(\rho(R_1) = 1\)

\[
\begin{bmatrix}
1 & 2 & 2 \\
1 & 3 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]
\(\rho(R_2) = 2\)
EXEMPLO:

\[
\begin{align*}
 u &= x_1 + x_1 \\
 u &= x_2 + x_2
\end{align*}
\Rightarrow

\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{bmatrix} =

\begin{bmatrix}
 -1 & 0 \\
 0 & -1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} +

\begin{bmatrix}
 1 \\
 1
\end{bmatrix} u
\]

\[
U = \begin{bmatrix}
 B & AB
\end{bmatrix} =
\begin{bmatrix}
 1 & -1 \\
 1 & -1
\end{bmatrix}
\rho(U) = 1 < 2 \quad \text{(Não-Controlável)}
\]

8.5 Observabilidade

- Definição

O sistema \((A, B, C, d)\) é observável se para todo \(x(0)\), o conhecimento da entrada \(u(t)\) e da saída \(y(t)\) em um tempo finito é suficiente para determinar \(x(0)\).

- Teorema

O sistema \((A, B, C, d)\) é observável se e somente se o posto da matriz de observabilidade \(V (nq \times n)\) associada é igual a \(n\).

\[
V = \begin{bmatrix}
 C \\
 CA \\
 CA^2 \\
 : \\
 CA^{n-1}
\end{bmatrix}
\]
EXEMPLO:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+ \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} u
\]

\[y = \begin{bmatrix}
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]

\[V = \begin{bmatrix}
C \\
CA \\
CA^2
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]

\[\rho(V) = 2 < 3 \quad \text{(Não-observável)}\]

8.6 Realizações de Funções de Transferência

Dada a seguinte representação em variáveis de estado de um sistema SISO:

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]

\[y(t) = Cx(t) + du(t)\]

\((A,B,C,d)\) é uma realização de \(G(s)\) se:

\[C(sI - A)^{-1}B + d = G(s)\]

com:

\[
\frac{Y(s)}{U(s)} = G(s) = \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \ldots + \beta_n}{s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \ldots + \alpha_n} + d = \frac{N(s)}{D(s)} + d
\]
8.6.1 Realização na Forma Canônica Observável

\[
A = \begin{bmatrix}
0 & 0 & \ldots & 0 & -\alpha_n \\
1 & 0 & \ldots & 0 & -\alpha_{n-1} \\
0 & 0 & \ldots & 0 & -\alpha_2 \\
0 & 0 & \ldots & 1 & -\alpha_1 \\
\end{bmatrix} ;
B = \begin{bmatrix}
\beta_n \\
\beta_{n-1} \\
\beta_2 \\
\beta_1 \\
\end{bmatrix} ;
C = [0 \ 0 \ldots \ 0 \ 1]
\]

8.6.2 Realização na Forma Canônica Controlável

\[
A = \begin{bmatrix}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
-\alpha_n & -\beta_{n-1} & \ldots & -\alpha_2 & -\alpha_1 \\
\end{bmatrix} ;
B = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
\end{bmatrix} ;
C = [\beta_n \ \beta_{n-1} \ldots \ \beta_2 \ \beta_1]
\]
8.7 Realimentação De Estado

Idéia: Alocar os pólos de malha fechada (autovalores da matriz dinâmica) usando realimentação dos estados, modificando, assim, a dinâmica do sistema.

Dada uma representação em variáveis de estado de um sistema:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + du(t)
\end{align*}
\]

Usando realimentação de estado, cada variável de estado é multiplicada por um ganho e realimentada para o terminal de entrada, ou seja:

\[u = Kx + r\]

onde:

\[K = \begin{bmatrix} k_1 & k_2 & \ldots & k_n \end{bmatrix}\]

é o vetor de ganhos de realimentação

Assim, temos:

\[
\begin{align*}
\dot{x} &= Ax + B(Kx + r) \Leftrightarrow \dot{x} = (A + BK)x + Br \\
y &= Cx + du
\end{align*}
\]

OBS: Devemos ter acesso a todos os estados do sistema.
- Teorema

Se \((A,B,C,d)\) for controlável, usando \(u = Kx + r\) podemos escolher arbitrariamente os autovalores de \((A+BK)\).

- Método para determinar \(K\) (Fórmula de Ackermann)

1- Formar \(\Delta(s) = s^n + a_1s^{n-1} + ... + a_n, s + a_n\) com os pólos desejados.

2- Calcular \(K\) da seguinte forma

\[
K = -\begin{bmatrix} 0 & 0 & \ldots & 1 \end{bmatrix} U^{-1} q_e(A)
\]

onde:

\[
U = \begin{bmatrix} B & AB & A^2B & \ldots & A^{n-1}B \end{bmatrix}
\]

\[
q_e(A) = A^n + a_1A^{n-1} + \ldots + a_n I
\]

EXEMPLO:

Dado:

\[
\dot{x} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u
\]

\(y = [1 \quad 1] x\)

Usando \(u = Kx + r\), determine \(K\) para que os autovalores do sistema sejam -1 e -2.

Solução:

\[
\Delta(s) = (s + 1)(s + 2) = s^2 + 3s + 2
\]

\[
U = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \Rightarrow U^{-1} = \begin{bmatrix} -2 & -1 \\ -1 & 1 \end{bmatrix} \Rightarrow K = \frac{1}{3} \begin{bmatrix} 0 & \begin{bmatrix} -2 & -1 \\ -1 & 1 \end{bmatrix} \\ \begin{bmatrix} 6 \ 0 \\ 0 \ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}
\]

\[
q_e(A) = A^2 + 3A + 2I = \begin{bmatrix} 6 & 0 \\ 0 & 0 \end{bmatrix}
\]
Simulação no *Matlab*

Script

% Programa para Realimentação de Estado
whitebg;
A=[1 0;0 -2];
B=[1 1]';
C=[1 1];
d=0;
K=[-2 0];
Aa=[A+B*K]
Ba=[B];
Ca=[1 1];
t=0:0.01:5;
u=0*t;
x0=[1 1]'
[Y1,X1]=LSIM(A,B,C,d,u,t,x0);
[Y,X] = LSIM(Aa,Ba,Ca,d,u,t,x0);
plot(t,Y1)
title('Saída sem realimentação de estado')
input(' ')
plot(t,Y)
title('Saída com realimentação de estado')

Curvas

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.8 Observadores de Estado

Para a realimentação de estado é necessário que o estado seja mensurável. Quando isto não ocorre, há a necessidade de construir um dispositivo denominado de observador ou estimador de estado.

Se \(\hat{x} \) é uma estimativa de \(x \), então, na realimentação de estado utiliza-se \(u = K\hat{x} + r \).

Seja

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
\]
conhecendo-se \(A, B \) e \(C \), e a medição de \(y \) e \(u \), constrói-se o estimador. Estudaremos o estimador assintótico:

\[
\dot{x}(t) = A\dot{x}(t) + L(y(t) - \hat{y}(t)) + Bu(t)
\]

\(y(t) = C\dot{x}(t) \)

onde:

\[
L = \begin{bmatrix} l_1 & l_2 & \ldots & l_n \end{bmatrix}^T
\]

Erro entre \(x \) e \(\hat{x} \):

\[
\tilde{x} = x - \hat{x}
\]

\[
\hat{x} = x - \dot{x} = Ax + Bu - A\dot{x} - L(y - \hat{y}) - Bu \Rightarrow
\]

\[
\tilde{x} = A(x - \hat{x}) - LC(x - \hat{x}) \Rightarrow
\]

\[
\tilde{x} = (A - LC)\tilde{x}
\]

Para que \(\lim_{t \to \infty} \tilde{x}(t) = 0 \) (erro entre valor real e estimado do estado nulo) é necessário que os autovalores de \((A-LC)\) tenham parte real negativa.

- Teorema

Se \((A,B,C,d)\) for observável, então um estimador de estado assintótico com quaisquer autovalores pode ser construído.
• **Método para determinar L (Fórmula de Ackermann)**

1- Formar $\Delta(s) = s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0$ com os pólos desejados para o observador.

2- Calcular K da seguinte forma

$$L = q_L(A)V^{-1}[0 \quad 0 \quad \ldots \quad 1]^T$$

onde:

$$V = \begin{bmatrix}
C \\
CA \\
CA^2 \\
\vdots \\
CA^{n-1}
\end{bmatrix}$$

$$q_L(A) = A^n + a_1A^{n-1} + \ldots + a_0I$$

EXEMPLO:

Dado

$$\dot{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}x_1 + \begin{bmatrix} 1 \\ 1 \end{bmatrix}u$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix}x$$

Projetar um observador de estado com autovalores -3, -3

Solução:

$$\Delta(s) = (s + 3)(s + 3) = s^2 + 6s + 9$$

$$V = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \Rightarrow V^{-1} = \begin{bmatrix} -2 & -1 \\ 3 & 1 \end{bmatrix}$$

$$\Rightarrow L = -\frac{1}{3} \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 16 \\ 3 \end{bmatrix}$$

$$q_L(A) = A^2 + 6A + 9I = \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix}$$
Simulação:

\[
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{bmatrix} = \begin{bmatrix}
A & 0 \\
\LC & A - \LC
\end{bmatrix} \begin{bmatrix}
x \\
\dot{x}
\end{bmatrix} + \begin{bmatrix}
B \\
B
\end{bmatrix} u
\]

\[y = \begin{bmatrix}
C \\
0
\end{bmatrix} \begin{bmatrix}
x \\
\dot{x}
\end{bmatrix}\]

Simulação no Matlab

<table>
<thead>
<tr>
<th>Script</th>
<th>Curvas</th>
</tr>
</thead>
</table>
| % Programa para Observadores de Estado
 whitebg;
 A=[1 0;0 -2];
 B=[1 1]';
 C=[1 1];
 d=0;
 L=1/3*[16 -1]';
 I=eye(2);
 Aa=[A 0*I;L*C (A-L*C)]
 Ba=[B;B];
 Ca=[1 1 0 0];
 t=0:0.01:5;
 u=0*t;
 x0=[1 1 0 0]';
 [Y,X] = LSIM(Aa,Ba,Ca,d,u,t,x0);
 plot(t,X(:,2))
 hold on;
 plot(t,X(:,4))
 title('Erro entre x2 e x2 estimado')
 hold off; | ![Erro entre x2 e x2 estimado](image) |
• Simulação (Realimentação de estado + Observador de estado)

\[
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{bmatrix} = \begin{bmatrix}
A & BK \\
LC & A - LC + BK
\end{bmatrix}
\begin{bmatrix}
x \\
\dot{\hat{x}}
\end{bmatrix} + \begin{bmatrix}
B \\
B
\end{bmatrix}r
\]

\[
y = \begin{bmatrix}
C \\
0
\end{bmatrix} \begin{bmatrix}
x \\
\dot{\hat{x}}
\end{bmatrix}
\]

Simulação no Matlab

Script

```matlab
% Programa para Observadores de Estado
+ Realimentação de Estado
whitebg;
A=[1 0;0 -2];
B=[1 1]';
C=[1 1];
d=0;
K=[-2 0];
L=1/3*[16 -1]';
I=eye(2);
Aa=[A B*K;L*C (A-L*C+B*K)]
Ba=[B;B];
Ca=[1 1 0 0];
t=0:0.01:5;
u=0*t;
x0=[1 1 0 0]'
[Y,X] = LSIM(Aa,Ba,Ca,d,u,t,x0);
plot(t,X(:,1))
hold on;
plot(t,X(:,3))
title('Erro entre x1 e x1 estimado')
hold off;
input(' ');
plot(t,Y)
title('Saída')
```

Curvas

![Erro entre x1 e x1 estimado](image1)

![Saída](image2)
8.9 Seguidor de Referência

Para que um sistema descrito por variáveis de estado possa, além de possuir a dinâmica desejada (garantida pela alocação de pólos por realimentação de estado) seguir uma determinada entrada com erro zero, usamos o princípio do **modelo interno**.

Considere entradas de referência descritas por equações do tipo:

\[
\begin{align*}
\dot{x}_r &= A_r x_r \\
r &= C_r x_r
\end{align*}
\]

com condições iniciais desconhecidas. Um modelo equivalente para entradas de referência é:

\[
\begin{align*}
r^{(n)} + \alpha_{n-1} r^{(n-1)} + \ldots + \alpha_1 \dot{r} + \alpha_0 r &= 0
\end{align*}
\]

onde \(r^{(n)} \) é a n-ésima derivada de \(r(t) \).

Exemplos:

a) **Degrau unitário**: \(r(t) = 1 \), \(t \geq 0 \)

\[
\begin{align*}
\dot{r} &= 0
\end{align*}
\]

Escolhendo \(x_r = r \), temos:

\[
\begin{align*}
\dot{x}_r &= 0 x_r \\
r &= 1 x_r
\end{align*}
\]

b) **Rampa unitária**: \(r(t) = t \), \(t \geq 0 \)

\[
\begin{align*}
\begin{cases}
\dot{r} &= 1 \\
\ddot{r} &= 0
\end{cases}
\end{align*}
\]

Escolhendo \(x_{r_1} = r \) e \(x_{r_2} = \dot{r} \):

\[
\begin{align*}
\begin{pmatrix}
\dot{x}_{r_1} \\
\dot{x}_{r_2}
\end{pmatrix} &=
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
x_{r_1} \\
x_{r_2}
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
r &=
\begin{pmatrix}
1 & 0
\end{pmatrix}
\begin{pmatrix}
x_{r_1} \\
x_{r_2}
\end{pmatrix}
\end{align*}
\]
Princípio do modelo interno aplicado a sistemas excitados por entradas de referência do tipo degrau unitário

Considere o sistema

\[\dot{x} = Ax + Bu \]
\[y = Cx \]

Definimos o erro de rastreamento como:

\[e(t) = y(t) - r(t) \]

Das características do sinal de referência, temos:

\[\dot{e} = \dot{y} - \dot{r} = \dot{y} = C\dot{x} \]

Definimos novas variáveis de estado como

\[
\begin{cases}
 z = \dot{x} \\
 w = \dot{u}
\end{cases}
\]

então temos,

\[
\begin{align*}
\dot{e} &= Cz \\
\dot{z} &= Az + Bw
\end{align*}
\]

⇒

\[
\begin{bmatrix}
\dot{e} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
0 & C \\
Bk_1 & A + Bk_2
\end{bmatrix}
\begin{bmatrix}
e \\
z
\end{bmatrix}
\]

Se o sistema for controlável, então, existe uma lei de controle por realimentação de estado da forma; \(w = k_1e + k_2z \); tal que os pólos do sistema aumentado podem ser posicionados arbitrariamente. Desde que escolhido na região de estabilidade, então o ERRO DE RASTREAMENTO será ESTÁVEL. Assim, o objetivo de rastreamento assintótico com erro em regime nulo SERÁ ALCANÇADO. Ou seja, a resposta do sistema abaixo é assintoticamente estável.

\[
\begin{bmatrix}
\dot{e} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
0 & C \\
Bk_1 & A + Bk_2
\end{bmatrix}
\begin{bmatrix}
e \\
z
\end{bmatrix}
\]

A entrada de controle \(u(t) \) é obtida da expressão:

\[u(t) = \int_0^t w(\tau)d\tau = k_1\int_0^t e(\tau)d\tau + k_2x(t) \]
EXEMPLO:

Considere o sistema descrito por:

\[
\begin{bmatrix}
0 & 1 \\
-2 & -2
\end{bmatrix}
x + \begin{bmatrix}
0 \\
1
\end{bmatrix}u = \begin{bmatrix} 1 & 0 \end{bmatrix}x
\]

Projetar um controlador para que o sistema tenha erro zero para entrada degrau.

Sistema aumentado:

\[
\begin{bmatrix}
\dot{e} \\
\dot{z}_1 \\
\dot{z}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & -2
\end{bmatrix} \begin{bmatrix}
e \\
z_1 \\
z_2
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}w
\]

Matriz de controlabilidade:

\[
U = \begin{bmatrix}
B & AB & A^2B
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & -2 & 2
\end{bmatrix}
\]

Escolhemos os pólos desejados em \(-10\) e \(-1\pm j1\)

Logo \(\Delta(s) = (s+10)(s+1+j1)(s+1-j1) = s^3 + 12s^2 + 22s + 20\)

Aplicação da fórmula de Ackermann

\[
K = \begin{bmatrix}
0 & 0 & ... & 1
\end{bmatrix} U^{-1} q_e(A)
\]

\[
U^{-1} = \begin{bmatrix}
2 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

\[
q_e(A) = A^3 + 12A^2 + 22A + 1 = \begin{bmatrix}
20 & 20 & 10 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
Logo,

\[\mathbf{K} = \begin{bmatrix} -20 & -20 & -10 \end{bmatrix} \]

Lei de controle

\[u(t) = \int_0^t w(\tau) d\tau = k_i \int_0^t e(\tau) d\tau + \mathbf{k}_x \mathbf{x}(t) = -20 \int_0^t e(\tau) d\tau + \begin{bmatrix} -20 & -10 \end{bmatrix} \mathbf{x}(t) \]

Sistema de malha fechada

\[\dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} u \implies \dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \left(k_i \int_0^t e(\tau) d\tau + \mathbf{k}_x \mathbf{x} \right) \]

Definindo \(x_{n+1} = \int_0^t e(\tau) d\tau \), temos:

\[\dot{x}_{n+1}(t) = e(t) = y(t) - r(t) = \mathbf{C} \mathbf{x}(t) - r(t) \]

Assim,

\[
\begin{bmatrix}
\dot{\mathbf{x}} \\
\dot{x}_{n+1}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{A} + \mathbf{B} \mathbf{k}_2 & \mathbf{B} \mathbf{k}_1 \\
\mathbf{C} & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x} \\
x_{n+1}
\end{bmatrix} +
\begin{bmatrix}
0 \\
-1
\end{bmatrix}
\]

Logo, para o exemplo, o sistema aumentado torna-se:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
-22 & -12 & -20 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix}
\]

Simulação no Matlab

<table>
<thead>
<tr>
<th>Script</th>
<th>Curvas</th>
</tr>
</thead>
</table>
| whitebg;
A=[0 1 0;-22 -12 -20;1 0 0];
B=[0 0 -1];
C=[1 0 0];
t=0:0.01:10;
[Y,X]=step(A,B,C,0,1,t);
plot(t,Y)
title('Saída da planta') | ![Saída da planta](image) |
Princípio do modelo interno aplicado a sistemas excitados por entradas de referência do tipo rampa unitária

Considere o sistema

\[
\dot{x} = Ax + Bu \\
y = Cx
\]

Definimos o erro de rastreamento como:

\[
e(t) = y(t) - r(t)
\]

com

\[
\dot{e} = \ddot{y} = C\dot{x}
\]

Definindo novas variáveis de estado como:

\[
\begin{cases}
z = \dot{x} \\
w = \ddot{u}
\end{cases}
\]

temos:

\[
\begin{bmatrix}
\dot{e} \\
\ddot{e} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & C \\
0 & 0 & A
\end{bmatrix}
\begin{bmatrix}
e \\
\dot{e} \\
z
\end{bmatrix}
+ \begin{bmatrix} 0 \\
w \\
B
\end{bmatrix}
\]

Se o sistema acima for controlável, então existe; \(w = k_1 e + k_2 \dot{e} + k_3 z \), tal que o sistema aumentado é asintoticamente estável e \(e(t) \to 0 \) quando \(t \to \infty \).

A lei de controle será dada por:

\[
u(t) = k_1 \int_0^\tau e(\tau)d\tau d\delta + k_2 \int_0^\tau \dot{e}(\tau)d\tau d\delta + k_3 \int_0^\tau e(\tau)d\tau + k_3 \dot{x}(t)
\]